Infrared and Laser Engineering, Volume. 51, Issue 1, 20220005(2022)
Progress and application of nonlinear laser manufacturing (Invited)
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).
[2] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 42(1991).
[3] Wang F Y, Zou T T, Xin W, et al. Control of the wettability of graphene oxide surface with femtosecond laser irradiation (Invited)[J]. Infrared and Laser Engineering, 49, 20201064(2020).
[4] Yue D M, Sun H L, Yang X, et al. Annular drilling process and quality control neural network model of stainless steel micro-hole with femtosecond laser[J]. Infrared and Laser Engineering, 50, 20200446(2021).
[5] Zhang Y L, Tian Y, Wang H, et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).
[6] Ma Z C, Hu X Y, Zhang Y L, et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).
[7] Liu X Q, Yang S N, Yu L, et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).
[8] Jiang H B, Zhang Y L, Liu Y, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser & Photonics Reviews, 10, 441-450(2016).
[9] Lei S T, Zhao X, Yu X M, et al. Ultrafast laser applications in manufacturing processes: A state-of-the-art review[J]. Journal of Manufacturing Science and Engineering, 142, 031005(2020).
[10] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).
[11] Eaton S M, Zhang H B, Herman P R. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 13, 4708-4716(2005).
[12] Eaton S M, Zhang H, Ng M L, et al. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Optics Express, 16, 9443-9458(2008).
[13] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).
[14] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[15] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).
[16] [16] Sugioka K, Cheng Y. Femtosecond Laser 3 D Micromachining f Microfluidic Optofluidic Applications [M]Springer Briefs in Applied Technology. London: Springer, 2014: 2425.
[17] Tan D F, Li Y, Qi F J, et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Applied Physics Letters, 90, 071106(2007).
[18] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[19] Sugioka K, Cheng Y, Midorikawa K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture[J]. Applied Physics A-Materials Science & Processing, 81, 1-10(2005).
[20] Straub M, Afshar M, Feili D, et al. Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15 fs pulsed near-infrared laser light[J]. Optics Letters, 37, 190-192(2012).
[21] Li L J, Fourkas J T. Multiphoton polymerization[J]. Materials Today, 10, 30-37(2007).
[22] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).
[23] Ye S, Cao Q, Wang Q S, et al. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation[J]. Scientific Reports, 6, 37591(2016).
[24] Shi X S, Li X, Jiang L, et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 5, 17557(2015).
[25] Marchese S V, Baer C R E, Engqvist A G, et al. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level[J]. Optics Express, 16, 6397-6407(2008).
[26] [26] Kleinbauer J, Eckert D, Weiler S, et al. 80 W ultrafast CPAfree disk laser [C]Proceedings of SPIE, 2008, 6871 : 68711B.
[27] Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).
[28] Lin J T, Yu S J, Ma Y G, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Optics Express, 20, 10212-10217(2012).
[29] Xu H L, Sun H B. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities[J]. Science China-Physics Mechanics & Astronomy, 58, 114202(2015).
[30] Huang T Y, Huang H W, Jin D D, et al. Four-dimensional micro-building blocks[J]. Science Advances, 6, eaav8219(2020).
[31] Lv C, Sun X C, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing[J]. Sensors and Actuators B-Chemical, 259, 736-744(2018).
[32] Mills B, Grant-Jacob J A, Feinaeugle M, et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device[J]. Optics Express, 21, 14853-14858(2013).
[33] Mills B, Heath D J, Feinaeugle M, et al. Laser ablation via programmable image projection for submicron dimension machining in diamond[J]. Journal of Laser Applications, 26, 041501(2014).
[34] Wang D, Wen C Y, Chang Y N, et al. Ultrafast laser-enabled 3D metal printing: A solution to fabricate arbitrary submicron metal structures[J]. Precision Engineering, 52, 106-111(2018).
[35] Guo Y M, Wang Y, Hu Q L, et al. High-resolution femtosecond laser beam shaping via digital holography[J]. Optics Letters, 44, 987-990(2019).
[36] Saha S K, Wang D, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).
[37] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Optics Letters, 31, 1705-1707(2006).
[38] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 6, 33281(2016).
[39] Xu B, Ji S Y, Pan D, et al. Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate[J]. Optics Letters, 45, 1071-1074(2020).
[40] Wang C W, Yang L, Hu Y L, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 13, 4667-4676(2019).
[41] Ji S Y, Yang L, Zhang C C, et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth[J]. Optics Letters, 43, 3514-3517(2018).
[42] Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery[J]. Advanced Materials, 31, 1808226(2019).
[43] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 6, e17011(2017).
[44] Chu W, Tan Y X, Wang P, et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 3, 1700396(2018).
[45] Wang P, Chu W, Li W B, et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution[J]. Micromachines, 10, 565(2019).
[46] Lin Z J, Xu J, Song Y P, et al. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects[J]. Advanced Materials Technologies, 5, 1900989(2020).
[47] Li B H, Jiang L, Li X W, et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femto-second laser shaping[J]. Advanced Optical Materials, 6, 1801021(2018).
[48] Jurkeviciute A, Klimaite G, Tamulevicius T, et al. Tailoring of silver nanoparticle size distributions in hydrogenated amorphous diamond-like carbon nanocomposite thin films by direct femtosecond laser interference patterning[J]. Advanced Engineering Materials, 22, 1900951(2020).
[49] Jia X, Jia T Q, Zhang S A, et al. Manipulation of cross-linked micro/nanopatterns on ZnO by adjusting the femtosecond-laser polarizations of four-beam interference[J]. Applied Physics A-Materials Science & Processing, 114, 1333-1338(2014).
[50] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).
[51] Nagelberg S, Zarzar L D, Nicolas N, et al. Reconfigurable and responsive droplet-based compound micro-lenses[J]. Nature Communications, 8, 14673(2017).
[52] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye: Compound microlens system for foveated imaging[J]. Science Advances, 3, e1602655(2017).
[53] Su Y H, Qin T T, Xu B, et al. Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test[J]. Optics and Precision Engineering, 28, 2629-2635(2020).
[54] Sun Y L, Li Q, Sun S M, et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists[J]. Nature Communications, 6, 8612(2015).
[55] Yang Q, Tong S Y, Chen F, et al. Lens-on-lens microstructures[J]. Optics Letters, 40, 5359-5362(2015).
[56] Sohn I B, Choi H K, Noh Y C, et al. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property[J]. Applied Surface Science, 479, 375-385(2019).
[57] Zhang H R, Yang F Y, Dong J J, et al. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation[J]. Nature Communications, 7, 13743(2016).
[58] Bauser H C, Bukowsky C R, Phelan M, et al. Photonic crystal waveguides for >90% light trapping efficiency in luminescent solar concentrators[J]. ACS Photonics, 7, 2122-2131(2020).
[59] Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).
[60] Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing[J]. Angewandte Chemie-International Edition, 53, 3318-3335(2014).
[61] Liu Z S, Zhou X Y, Jia X H, et al. Visible light perovskite-coated photonic crystal surface-emitter on SOI[J]. Semiconductor Science and Technology, 35, 075019(2020).
[62] Wei D Z, Wang C W, Wang H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).
[63] [63] Kalli K, Theodosiou A, Ioannou A, et al. Femtosecond laser processing of optical fibres f novel sens development [C]Proceedings of the 25 th International Conference on Optical Fibre Senss (OFS), 2017: 10323.
[64] Ming X Y, Guo Q, Xue Z K, et al. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 13, 737-744(2020).
[65] Liu X Q, Cheng R, Zheng J X, et al. Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography[J]. Journal of Lightwave Technology, 39, 4690-4694(2021).
[66] Hou X T, Xu X Y, Xu G Z, et al. Waveguide-coupled superconducting nanowire single-photon detectors based on femtosecond laser direct writing[J]. Optics Express, 29, 7746-7756(2021).
[67] He J, He J, Xu X Z, et al. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing[J]. Photonics Research, 9, 2052-2059(2021).
[68] Song Y J, Zhang Y Q, Bernard P E, et al. Multiplexed volumetric bar-chart chip for point-of-care diagnostics[J]. Nature Communications, 3, 1283(2012).
[69] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 12, 746-749(2012).
[70] Yalikun Y, Hosokawa Y, Iino T, et al. An all-glass 12 μm ultra-thin and flexible microfluidic chip fabricated by femtosecond laser processing[J]. Lab on a Chip, 16, 2427-2433(2016).
[71] Roth G L, Esen C, Hellmann R. Femtosecond laser direct generation of 3 D-microfluidic channels inside bulk PMMA[J]. Optics Express, 25, 18442-18450(2017).
[72] Xu B, Shi Y, Lao Z X, et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging[J]. Lab on a Chip, 18, 442-450(2018).
[73] Elgohary A, Block E, Squier J, et al. Fabrication of sealed sapphire microfluidic devices using femtosecond laser micromachining[J]. Applied Optics, 59, 9285-9291(2020).
[74] Bharadwaj V, Jedrkiewicz O, Hadden J P, et al. Femtosecond laser written photonic and microfluidic circuits in diamond[J]. Journal of Physics-Photonics, 1, 022001(2019).
[75] Zhang C Y, Liu H Y, Man W Q, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing[J]. Optics and Precision Engineering, 25, 3063-3069(2017).
[76] Li C, Stoian R, Cheng G H. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 11, 1-17(2018).
[77] Lim H U, Kang J, Guo C L, et al. Manipulation of multiple periodic surface structures on metals induced by femtosecond lasers[J]. Applied Surface Science, 454, 327-333(2018).
[78] Nivas J J J, Anoop K K, Bruzzese R, et al. Direct femtosecond laser surface structuring of crystalline silicon at 400 nm[J]. Applied Physics Letters, 112, 121601(2018).
[79] Rebollar E, de Aldana J R V, Perez-Hernandez J A, et al. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films[J]. Applied Physics Letters, 100, 041106(2012).
[80] Hohm S, Rohloff M, Rosenfeld A, et al. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences[J]. Applied Physics A-Materials Science & Processing, 110, 553-557(2013).
[81] Fraggelakis F, Stratakis E, Loukakos P A. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses[J]. Applied Surface Science, 444, 154-160(2018).
[82] Borowiec A, Haugen H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 82, 4462-4464(2003).
[83] Miyaji G, Miyazaki K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 16, 16265-16271(2008).
[84] Bhardwaj V R, Simova E, Rajeev P P, et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 96, 057404(2006).
[85] Reif J, Costache F, Henyk M, et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Applied Surface Science, 197, 891-895(2002).
[86] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 18, 2913-2924(2010).
[87] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 73, 1673-1675(1998).
[88] Her T H, Finlay R J, Wu C, et al. Femtosecond laser-induced formation of spikes on silicon[J]. Applied Physics A-Materials Science & Processing, 70, 383-385(2000).
[89] Vorobyev A Y, Guo C L. Direct creation of black silicon using femtosecond laser pulses[J]. Applied Surface Science, 257, 7291-7294(2011).
[90] Yong J L, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 4, 1700552(2017).
[91] Soong H K, Malta J B. Femtosecond lasers in ophthalmology[J]. American Journal of Ophthalmology, 147, 189-197(2009).
[92] Juhasz E, Filkorn T, Kranitz K, et al. Analysis of planned and postoperatively measured flap thickness after LASIK using the lensx multifunctional femtosecond laser system[J]. Journal of Refractive Surgery, 30, 622-626(2014).
[93] Farsari M, Chichkov B N. Two-photon fabrication[J]. Nature Photonics, 3, 450-452(2009).
[94] Ovsianikov A, Malinauskas M, Schlie S, et al. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications[J]. Acta Biomaterialia, 7, 967-974(2011).
[95] Tayalia P, Mendonca C R, Baldacchini T, et al. 3D cell-migration studies using two-photon engineered polymer scaffolds[J]. Advanced Materials, 20, 4494-4498(2008).
Get Citation
Copy Citation Text
Yuqing Liu, Hongbo Sun. Progress and application of nonlinear laser manufacturing (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220005
Category: Lasers & Laser optics
Received: Jan. 4, 2022
Accepted: --
Published Online: Mar. 8, 2022
The Author Email: