Chinese Journal of Quantum Electronics, Volume. 39, Issue 1, 3(2022)

Recent advances in transmission of photonic orbital angular momentum quantum state

Kai XU1,*... Huan CAO1,2, Chao ZHANG1, Xiaomin HU1, Yunfeng HUANG1, Biheng LIU1 and Chuanfeng LI1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(214)

    [1] [1] Liu S, Lou Y, Jing J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation [J]. Nature Communications, 2020, 11(1): 3875.

    [2] [2] Lee S M, Lee S W, Jeong H, et al. Quantum teleportation of shared quantum secret [J]. Physical Review Letters, 2020, 124(6): 060501.

    [3] [3] Langenfeld S, Welte S, Hartung L, et al. Quantum teleportation between remote qubit memories with only a single photon as a resource [J]. Physical Review Letters, 2021, 126(13): 130502.

    [4] [4] Im D G, Lee C H, Kim Y, et al. Optimal teleportation via noisy quantum channels without additional qubit resources [J]. NPJ Quantum Information, 2021, 7(1): 86.

    [5] [5] Huang N N, Huang W H, Li C M. Identification of networking quantum teleportation on 14-qubit IBM universal quantum computer [J]. Scientific Reports, 2020, 10(1): 3093.

    [6] [6] Huang H L, Narozniake M, Liang F, et al. Emulating quantum teleportation of a Majorana zero mode qubit [J]. Physical Review Letters, 2021, 126(9): 090502.

    [7] [7] Chen M C, Li R, Gan L, et al. Quantum-teleportation-inspired algorithm for sampling large random quantum circuits [J]. Physical Review Letters, 2020, 124(8): 080502.

    [8] [8] Dildar H, Arapat A, Bai H T, et al. Effect of non-Markovian environment on quantum teleportation via a two-qubit Heisenberg XXZ spin chain [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 704-710.

    [12] [12] Zhou Y Y, Liu Y H, Yan Z H, et al. A multifunctional quantum teleportation network [J]. Acta Physica Sinica, 2021, 70(10): 104201-104203.

    [13] [13] Yin J, Li Y H, Liao S K, et al. Entanglement-based secure quantum cryptography over 1, 120 kilometres [J]. Nature, 2020, 582(7813): 501-505.

    [14] [14] Cao Y, Li Y H, Yang K X, et al. Long-distance free-space measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2020, 125(26): 260503.

    [15] [15] Zhou W T, Wang X, Bian Y X, et al. Multidimensional reverse negotiation protocol for continuous variable quantum key distribution based on polar code [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 460-467.

    [19] [19] Chen J P, Zhang C, Liu Y, et al. Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km [J]. Physical Review Letters, 2020, 124(7): 070501.

    [20] [20] Gonzalez-Payo J, Trenyi R, Wang W, et al. Upper security bounds for coherent-one-way quantum key distribution [J]. Physical Review Letters, 2020, 125(26): 260510.

    [21] [21] Rozema L A, Bateman J D, Mahler D H, et al. Scalable spatial superresolution using entangled photons [J]. Physical Review Letters, 2014, 112(22): 223602.

    [22] [22] Paúr M, Stoklasa B, Hradil Z, et al. Achieving the ultimate optical resolution [J]. Optica, 2016, 3(10): 1144-1147.

    [23] [23] Tsang M, Nair R, Lu X M. Quantum theory of superresolution for two incoherent optical point sources [J]. Physical Review X, 2016, 6(3): 031033.

    [24] [24] Yang F, Tashchilina A, Moiseev E S, et al. Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode [J]. Optica, 2016, 3(10): 1148-1152.

    [25] [25] Tham W K, Ferretti H, Steinberg A M. Beating Rayleigh’s curse by imaging using phase information [J]. Physical Review Letters, 2017, 118(7): 070801.

    [26] [26] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy [J]. Science, 2018, 361(6405): 880-887.

    [27] [27] Yu Z, Prasad S. Quantum limited superresolution of an incoherent source pair in three dimensions [J]. Physical Review Letters, 2018, 121(18): 180504.

    [28] [28] Napoli C, Piano S, Leach R, et al. Towards superresolution surface metrology: Quantum estimation of angular and axial separations [J]. Physical Review Letters, 2019, 122(14): 140505.

    [29] [29] Zhou Y, Yang J, Hassett J D, et al. Quantum-limited estimation of the axial separation of two incoherent point sources [J]. Optica, 2019, 6(5): 534-541.

    [30] [30] Duan Z C, Li J P, Qin J, et al. Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source [J]. Optics Express, 2020, 28(13): 18917-18930.

    [31] [31] Ezawa M. Electric circuits for universal quantum gates and quantum Fourier transformation [J]. Physical Review Research, 2020, 2(2): 023278.

    [32] [32] Huang Y, Su Z, Zhang F, et al. Quantum algorithm for solving hyperelliptic curve discrete logarithm problem [J]. Quantum Information Processing, 2020, 19(2): 62.

    [33] [33] Hwang Y, Kim T, Baek C, et al. Integrated analysis of performance and resources in large-scale quantum computing [J]. Physical Review Applied, 2020, 13(5): 054033.

    [34] [34] Zhu D, Jaako T, He Q, et al. Quantum computing with superconducting circuits in the picosecond regime [J]. Physical Review Applied, 2021, 16(1): 014024.

    [35] [35] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.

    [36] [36] Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussian Boson sampling using stimulated squeezed light [J]. Physical Review Letters, 2021, 127(18): 180502.

    [37] [37] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.

    [38] [38] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574(7779): 505-510.

    [39] [39] Gong M, Wang S, Zha C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor [J]. Science, 2021, 372(6545): 948-952.

    [40] [40] Wu Y, Bao W S, Cao S, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Physical Review Letters, 2021, 127(18): 180501.

    [41] [41] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343): 1140-1144.

    [42] [42] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Physical Review, 1935, 47(10): 696-702.

    [43] [43] Bell J S. On the Einstein Podolsky Rosen paradox [J]. Physics Physique Fizika, 1964, 1(3): 195-200.

    [44] [44] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell’s theorem [J]. Physical Review Letters, 1981, 47(7): 460-463.

    [45] [45] Aspect A, Dalibard J, Roger G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities [J]. Physical Review Letters, 1982, 49(2): 91-94.

    [46] [46] Hensen B, Bernien H, Dreau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres [J]. Nature, 2015, 526(7575): 682-686.

    [47] [47] Lloyd S. Enhanced sensitivity of photo detection via quantum illumination [J]. Science, 2008, 321(5895): 1463-1465.

    [48] [48] Neeley M, Ansmann M, Bialczak R C, et al. Emulation of a quantum spin with a superconducting phase qudit [J]. Science, 2009, 325(5941): 722-725.

    [49] [49] Kaltenbaek R, Lavoie J, Zeng B, et al. Optical one-way quantum computing with a simulated valence-bond solid [J]. Nature Physics, 2010, 6(11): 850-854.

    [50] [50] Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: Concepts and experiments [J]. Physical Review Letters, 2017, 119(18): 180510.

    [51] [51] Tavakoli A, Cabello A, Zukowski M, et al. Quantum clock synchronization with a single qudit [J]. Scientific Reports, 2015, 5(1): 7982.

    [52] [52] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding [J]. Nature Physics, 2008, 4(4): 282-286.

    [53] [53] Kong L J, Liu R, Qi W R, et al. Manipulation of eight-dimensional Bell-like states [J]. Science Advances, 2019, 5(6): eaat9206.

    [54] [54] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems [J]. Physical Review Letters, 2002, 88(12): 127902.

    [55] [55] Sheridan L, Scarani V. Security proof for quantum key distribution using qudit systems [J]. Physical Review A, 2010, 82(3): 030301.

    [56] [56] Navez P, Cerf N J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition [J]. Physical Review A, 2003, 68(3): 32313.

    [57] [57] Bruβ D, Macchiavello C. Optimal state estimation for d-dimensional quantum systems [J]. Physics Letters A, 1999, 253(5-6): 249-251.

    [58] [58] Chen J L, Kaszlikowski D, Kwek L C, et al. Entangled three-state systems violate local realism more strongly than qubits: An analytical proof [J]. Physical Review A, 2001, 64(5): 52109.

    [59] [59] Durt T, Kaszlikowski D, Zukowski M. Violations of local realism with quantum systems described by n-dimensional Hilbert spaces up to n=16 [J]. Physical Review A, 2001, 64(2): 024101.

    [60] [60] Kaszlikowski D, Gnaciński P, Zukowski M, et al. Dimensional systems are stronger than for two qubits [J]. Physical Review Letters, 2000, 85(21): 4418-4421.

    [61] [61] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement [J]. Nature Reviews Physics, 2020, 2(7): 365-381.

    [62] [62] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.

    [63] [63] Krenn M, Huber M, Fickler R, et al. Generation and confirmation of a (100×100)-dimensional entangled quantum system [C]. Proceedings of the National Academy of Sciences of the United States of America, 2014: 6243-6247.

    [64] [64] Erhard M, Malik M, Krenn M, et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits [J]. Nature Photonics, 2018, 12(12): 759-764.

    [65] [65] Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10(4): 248-252.

    [66] [66] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1): 2781.

    [67] [67] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120(19): 193904.

    [68] [68] Berkhout G C, Lavery M P, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105(15): 153601.

    [69] [69] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015, 518(7540): 516-519.

    [70] [70] Brandt F, Hiekkamaki M, Bouchard F, et al. High-dimensional quantum gates using full-field spatial modes of photons [J]. Optica, 2020, 7(2): 98-107.

    [71] [71] Zhang Y, Roux F S, Konrad T, et al. Engineering two-photon high-dimensional states through quantum interference [J]. Science Advances, 2016, 2(2): e1501165.

    [72] [72] Hiekkamki M, Fickler R. High-dimensional two-photon interference effects in spatial modes [J]. Physical Review Letters, 2021, 126(12): 123601.

    [73] [73] Chen Y, Gao J, Jiao Z Q, et al. Mapping twisted light into and out of a photonic chip [J]. Physical Review Letters, 2018, 121(23): 233602.

    [74] [74] Chen Y, Xia K Y, Shen W G, et al. Vector vortex beam emitter embedded in a photonic chip [J]. Physical Review Letters, 2020, 124(15): 153601.

    [75] [75] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [76] [76] Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light [J]. Nano Letters, 2013, 13(9): 4148-4151.

    [77] [77] Karimi E, Schulz S A, Leon I D, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light: Science & Applications, 2014, 3(5): 167.

    [78] [78] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.

    [79] [79] Chen L X, Zhang Y Y. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons [J]. Acta Physica Sinica, 2015, 64(16): 164210.

    [80] [80] Guo Z Y, Gong C F, Liu H J, et al. The research progress of OAM optical communication technology [J]. Opto-Electronic Engineering, 2020, 47(3): 95-128.

    [81] [81] Willner A E, Zhao Z, Liu C, et al. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams [J]. APL Photonics, 2021, 6(3): 030901.

    [82] [82] Gori F, Guattari G, Padovani C. Bessel-Gauss beams [J]. Optics Communications, 1987, 64(6): 491-495.

    [83] [83] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [84] [84] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO(4) 1.3-mum bounce laser [J]. Optics Express, 2007, 15(12): 7616-7622.

    [85] [85] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser [J]. Optics Express, 2013, 21(10): 12401-12409.

    [86] [86] Lee A J, Zhang C, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser [J]. Optics Express, 2014, 22(5): 5400-5409.

    [87] [87] Wang S, Zhang S L, Qiao H C, et al. Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser [J]. Optics Express, 2018, 26(21): 26925-26932.

    [88] [88] Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser [J]. Science, 2016, 353(6298): 464-467.

    [89] [89] Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip [J]. Optics Letters, 2018, 43(13): 3140-3143.

    [90] [90] Shuang Z, Jian W. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides [J]. Optics Express, 2017, 25(15): 18492.

    [91] [91] Xiao Q, Klitis C, Li S, et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings [C]. Conference on Lasers and Electro-Optics (CLEO), 2016: 1-2.

    [92] [92] Lin J, Yuan X, Tao S H, et al. Synthesis of multiple collinear helical modes generated by a phase-only element [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23(5): 1214-1218.

    [93] [93] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Perot cavity [J]. Opto-Electronic Advances, 2018, 1(5): 180006.

    [94] [94] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterization of high-quality spiral phase plates for optical applications [J]. Applied Optics, 2015, 54(13): 4077-4083.

    [95] [95] Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams [J]. Journal of the Optical Society of America B: Optical Physics, 2017, 34(3): 608-612.

    [96] [96] Guo X L, Ke X Z. Research of realizing optical phase information encode by using orbital angular momentum of light beam [J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 69-76.

    [98] [98] Zhao Y, Du J, Zhang J, et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm [J]. Applied Physics Letters, 2018, 112: 171103.

    [99] [99] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer [J]. Optics Express, 2018, 26(10): 13183-13194.

    [100] [100] Zhang X D, Liu S J, Zhai F X, et al. A review of generation of vortex beams based on the geometric phase metasurfaces [J]. Journal of Light Industry, 2021, 36(3): 88-98.

    [101] [101] Lv H R, Bai Y H, Ye Z W, et al. Advances in vortex beam generation using metasurface (invited) [J]. Infrared and Laser Engineering, 2021, 50(9): 62-77.

    [102] [102] Liu K T, Liu X, Ge Y H, et al. Generation of orbital angular momentum vortex beams based on high-efficiency transmission metasurface [J]. Acta Optica Sinica, 2019, 39(1): 252-257.

    [103] [103] Beijersbergen M W, Allen L, Vanderveen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular-momentum [J]. Optics Communications, 1993, 96(1-3): 123-132.

    [104] [104] Inavalli V V G K, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber [J]. Optics Communications, 2010, 283(6): 861-864.

    [105] [105] Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes [J]. Optics Letters, 2011, 36(21): 4269-4271.

    [106] [106] Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs [J]. Optics Letters, 2012, 37(17): 3645-3647.

    [107] [107] Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter [J]. Optics Letters, 2015, 40(18): 4376-4379.

    [108] [108] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes [J]. Optics Letters, 2012, 37(16): 3294-3296.

    [109] [109] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings [J]. Optics Letters, 2015, 40(17): 4010-4013.

    [110] [110] Karimi E, Piccirillo B, Nagali E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates [J]. Applied Physics Letters, 2009, 94(23): 299.

    [111] [111] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications [J]. Journal of Optics, 2011, 13(6): 064001.

    [112] [112] Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges [J]. Applied Optics, 2012, 51(10): C1-6.

    [113] [113] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288.

    [114] [114] Friese M, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles [J]. Nature, 1998, 394(6691): 348-350.

    [115] [115] O’neil A T, Macvicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam [J]. Physical Review Letters, 2002, 88(5): 053601.

    [116] [116] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner [J]. Optics Letters, 1997, 22(1): 52-54.

    [117] [117] Grier D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.

    [118] [118] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: Theory and experiments [J]. Optics Letters, 2000, 25(2): 99-101.

    [119] [119] Jesacher A, Furhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy [J]. Physical Review Letters, 2005, 94(23): 233902.

    [120] [120] Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality [J]. Physical Review Letters, 2009, 103(8): 83602.

    [121] [121] Padgett M, Courtial J, Allen L. Light’s orbital angular momentum [J]. Physics Today, 2004, 57(5): 35-40.

    [122] [122] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum [J]. Laser Photonics Reviews, 2010, 2(4): 299-313.

    [123] [123] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    [124] [124] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5): B14-B28.

    [125] [125] Krenn M, Handsteiner J, Fink M, et al. Twisted photon entanglement through turbulent air across Vienna [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(46): 14197-14201.

    [126] [126] Erhard M, Fickler R, Krenn M, et al. Twisted photons: New quantum perspectives in high dimensions [J]. Light: Science & Applications, 2018, 7: 17146.

    [127] [127] Yang W D, Qiu X D, Chen L X. Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams [J]. Chinese Journal of Lasers, 2020, 47(5): 0500013.

    [128] [128] Dong Y D, Peng X T, Song Y. Multi-user quantum identity authentication protocol based on orbital angular momentum [J]. Journal of Quantum Optics, 2019, 25(2): 152-157.

    [131] [131] Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2): 197-200.

    [132] [132] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes [C]. The European Conference on Optical Communication (ECOC), 2014: 1-3.

    [133] [133] Ren Y, Wang Z, Liao P, et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m [J]. Optics Letters, 2016, 41(3): 622.

    [134] [134] Zhao Y, Liu J, Jing D, et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing [C]. Optical Fiber Communications Conference & Exhibition, 2016: 1-3.

    [135] [135] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648-13653.

    [136] [136] Sit A, Bouchard F, Fickler R, et al. High-dimensional intracity quantum cryptography with structured photons [J]. Optica, 2017, 4(9): 1006-1010.

    [137] [137] Gopaul C, Andrews R. The effect of atmospheric turbulence on entangled orbital angular momentum states [J]. New Journal of Physics, 2007, 9(4): 94.

    [138] [138] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum [J]. Optics Letters, 2009, 34(2): 142-144.

    [139] [139] Bruenner T, Roux F S. Robust entangled qutrit states in atmospheric turbulence [J]. New Journal of Physics, 2012, 15(6): 345-351.

    [140] [140] Alonso J R G, Brun T A. Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere [J]. Physical Review A, 2013, 88(2): 022326.

    [141] [141] Ibrahim A H, Roux F S, Konrad T. Parameter dependence in the atmospheric decoherence of modally entangled photon pairs [J]. Physical Review A, 2014, 90(5): 052115.

    [142] [142] Leonhard N D, Shatokhin V N, Buchleitner A. Universal entanglement decay of photonic orbital angular momentum qubit states in atmospheric turbulence [J]. Physical Review A, 2015, 91(1): 12345-12345.

    [143] [143] Pors B J, Monken C H, Eliel E R, et al. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere [J]. Optics Express, 2011, 19(7): 6671-6683.

    [144] [144] Ibrahim A H, Roux F S, Mclaren M, et al. Orbital-angular-momentum entanglement in turbulence [J]. Physical Review A, 2013, 88(1): 5706-5714.

    [145] [145] Pereira M V D, Filpi La P, Monken C H. Cancellation of atmospheric turbulence effects in entangled two-photon beams [J]. Physical Review A, 2013, 88(5): 51-57.

    [146] [146] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna [J]. New Journal of Physics, 2014, 16(11): 113028.

    [147] [147] Xie G, Li L, Ren Y, et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link [J]. Optica, 2015, 2(4): 357.

    [148] [148] Zhong X, Zhao Y Q, Ren G H, et al. Influence of finite apertures on orthogonality and completeness of Laguerre-Gaussian beams [J]. IEEE Access, 2018, 6: 8742-8754.

    [149] [149] Malik M, O’sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding [J]. Optics Express, 2012, 20(12): 13195-13200.

    [150] [150] Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing [J]. Optics Letters, 2013, 38(20): 4062-4065.

    [151] [151] Ramachandran S, Kristensen P. Optical vortices in fiber [J]. Nanophotonics, 2013, 2(5-6): 455-474.

    [152] [152] Brunet C, Ung B, Bélanger P, et al. Vector mode analysis of ring-core fibers: Design tools for spatial division multiplexing [J]. Journal of Lightwave Technology, 2014, 32(23): 4648-4659.

    [153] [153] Wang Z, Tu J J, Gao S C, et al. Transmission and generation of orbital angular momentum modes in optical fibers [J]. Photonics, 2021, 8(7): 246.

    [154] [154] Chen S, Liu J, Zhao Y, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1 km orbital angular momentum fiber [J]. Scientific Reports, 2016, 6(1): 38181.

    [155] [155] Liu J, Li S, Du J, et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6 km few-mode fiber system [J]. Optics Letters, 2016, 41(9): 1969-1972.

    [156] [156] Zhu L, Yang C, Xie D, et al. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals [J]. Optics Letters, 2017, 42(4): 763-766.

    [157] [157] Chen S, Wang J. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre [J]. Scientific Reports, 2017, 7(1): 3990.

    [158] [158] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6 km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21): 25637-25645.

    [159] [159] Wang A, Zhu L, Wang L, et al. Directly using 8.8 km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission [J]. Optics Express, 2018, 26(8): 10038-10047.

    [160] [160] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network [J]. Optics Letters, 2018, 43(8): 1894-1897.

    [161] [161] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers [J]. Optics Letters, 2009, 34(16): 2525-2527.

    [162] [162] Zhang J, Zhu G, Liu J, et al. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining [J]. Optics Express, 2018, 26(4): 4243-4257.

    [163] [163] Jung Y, Kang Q, Zhou H, et al. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission [J]. Journal of Lightwave Technology, 2017, 35(8): 1363-1368.

    [164] [164] Zhu G, Hu Z, Wu X, et al. Scalable mode division multiplexed transmission over a 10 km ring-core fiber using high-order orbital angular momentum modes [J]. Optics Express, 2018, 26(2): 594-604.

    [165] [165] Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop [J]. Optics Express, 2016, 24(17): 18938-18947.

    [166] [166] Li S, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing [J]. IEEE Photonics Journal, 2013, 5(5): 7101007.

    [167] [167] Li S, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes) [J]. Scientific Reports, 2014, 4(1): 3853.

    [168] [168] Hu Z A, Huang Y Q, Luo A P, et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes [J]. Optics Express, 2016, 24(15): 17285-17291.

    [169] [169] Li S, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission [J]. Optics Express, 2015, 23(14): 18736-18745.

    [170] [170] Long Z, Wang A, Shi C, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6 km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21): 25637-25645.

    [171] [171] Huang H, Milione G, Lavery M P J, et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre [J]. Scientific Reports, 2015, 5(1): 14931.

    [172] [172] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548.

    [173] [173] Ingerslev K, Gregg P, Galili M, et al. 12 mode, WDM, MIMO-free orbital angular momentum transmission [J]. Optics Express, 2018, 26(16): 20225-20232.

    [174] [174] Gregg P, Kristensen P, Golowich S E, et al. Stable transmission of 12 OAM states in air-core fiber [C]. Conference on Lasers and Electro-Optics, 2013: 2.

    [175] [175] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes [J]. Optics Express, 2014, 22(15): 18044-18055.

    [176] [176] Zhu L, Zhu G, Wang A, et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation [J]. Optics Letters, 2018, 43(8): 1890-1893.

    [177] [177] Zhou W, Wang L, Shen L, et al. First demonstration of ultra-long-distance mode-division multiplexing transmission using orbital angular momentum (OAM) modes over 150-km low-loss ring-core fiber without amplifiers [C]. European Conference on Optical Communication, 2019: 216.

    [178] [178] Zhang J, Liu J, Shen L, et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100 km single-span orbital angular momentum fiber [J]. Photonics Research, 2020, 8(7): 1236-1242.

    [179] [179] Sit A, Fickler R, Alsaiari F, et al. Quantum cryptography with structured photons through a vortex fiber [J]. Optics Letters, 2018, 43(17): 4108-4111.

    [180] [180] Cozzolino D, Bacco D, Da Lio B, et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication [J]. Physical Review Applied, 2019, 11(6): 064058.

    [181] [181] Loeffler W, Euser T G, Eliel E R, et al. Fiber transport of spatially entangled photons [J]. Physical Review Letters, 2011, 106(24): 240505.

    [182] [182] Kang Y, Ko J, Lee S M, et al. Measurement of the entanglement between photonic spatial modes in optical fibers [J]. Physical Review Letters, 2012, 109(2): 020502.

    [183] [183] Cozzolino D, Polino E, Valeri M, et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states [J]. Advanced Photonics, 2019, 1(4): 046005.

    [184] [184] Liu J, Nape I, Wang Q, et al. Multidimensional entanglement transport through single-mode fiber [J]. Science Advances, 2020, 6: eaay0837.

    [185] [185] Cao H, Gao S C, Zhang C, et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber [J]. Optica, 2020, 7(3): 232-237.

    [186] [186] Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems [J]. Physical Review Letters, 2002, 88(4): 040404.

    [187] [187] Cozzolino D, Da Lio B, Bacco D, et al. High-dimensional quantum communication: Benefits, progress, and future challenges [J]. Advanced Quantum Technologies, 2019, 2(12): 1900038.

    [188] [188] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J]. Optics Express, 2016, 24(9): 9794-9805.

    [189] [189] Cheng M, Guo L, Li J, et al. Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean [J]. IEEE Photonics Journal, 2016, 8(1): 1.

    [190] [190] Ren Y, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications [J]. Scientific Reports, 2016, 6: 33306.

    [191] [191] Li Y, Cui Z, Han Y, et al. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36(4): 471-477.

    [192] [192] Pan S, Wang L, Wang W, et al. An effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum [J]. Scientific Reports, 2019, 9(1): 14009.

    [193] [193] Hu T, Pan S X, Wang L, et al. Influence of underwater turbulence on channel capacity of orbital angular momentum communication system [J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 499-506.

    [195] [195] Zhai S, Wang J, Zhu Y, et al. Quantum-channel capacity of distributing orbital-angular-momentum states for underwater optical quantum communication [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38(1): 36-41.

    [196] [196] Chen S, Li S, Zhao Y, et al. Demonstration of 20 Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation [J]. Optics Letters, 2016, 41(20): 4680-4683.

    [197] [197] Ren Y, Xie G, Huang H, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link [J]. Optica, 2014, 1(6): 376-382.

    [198] [198] Ren Y, Xie G, Huang H, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength [J]. Optics Letters, 2015, 40(10): 2249-2252.

    [199] [199] Fu S, Zhang S, Wang T, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm [J]. Optics Letters, 2016, 41(14): 3185-3188.

    [200] [200] Winzer P J, Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems [J]. Optics Express, 2011, 19(17): 16680-16696.

    [201] [201] Huang H, Cao Y, Xie G, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization [J]. Optics Letters, 2014, 39(15): 4360-4363.

    [202] [202] Ren Y, Wang Z, Xie G, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization [J]. Optics Letters, 2016, 41(11): 2406-2409.

    [203] [203] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence [J]. Optics Express, 2018, 26(17): 22182-22196.

    [204] [204] Zhang W H, Li C, Li W, et al. Performance of misaligned optical orbital angular momentum multiplexing communication system with MIMO equalization [J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 85-91.

    [205] [205] Labroille G, Denolle B, Jian P, et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion [J]. Optics Express, 2014, 22(13): 15599-15607.

    [206] [206] Song H, Song H, Zhang R, et al. Experimental mitigation of atmospheric turbulence effect using pre-signal combining for uni- and bi-directional free-space optical links with two 100 Gbit/s OAM-multiplexed channels [J]. Journal of Lightwave Technology, 2020, 38(1): 82-89.

    [207] [207] Willner A E, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links [J]. Nanophotonics, 2020, 10(1): 225-233.

    [208] [208] Valencia N H, Goel S, Mccutcheon W, et al. Unscrambling entanglement through a complex medium [J]. Nature Physics, 2020, 16(11): 1112-1116.

    [209] [209] Hu X M, Zhang C, Guo Y, et al. Pathways for entanglement-based quantum communication in the face of high noise [J]. Physical Review Letters, 2021, 127(11): 110505.

    [210] [210] Hu X M, Huang C X, Sheng Y B, et al. Long-distance entanglement purification for quantum communication [J]. Physical Review Letters, 2021, 126(1): 010503.

    [211] [211] Bi F, Ba Z, Wang X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region [J]. Optics Express, 2018, 26(20): 25693-25705.

    [212] [212] Huang S, Song X, Gao X, et al. Analog radio of fiber link of 2-Gbaud OOK/BPSK radio frequency-orbital angular momentum beam transmission over 19.4 km [J]. Optics Express, 2021, 29(2): 2124-2134.

    [213] [213] Liu C, Wei X, Niu L, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer [J]. Optics Express, 2016, 24(12): 12534-12541.

    [214] [214] Li H, Ren G, Zhu B, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers [J]. Optics Letters, 2017, 42(2): 179-182.

    Tools

    Get Citation

    Copy Citation Text

    XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 30, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: Kai XU (sa038015@mail.ustc.edu.cn)

    DOI:10.3969/j.issn.1007-5461. 2022.01.001

    Topics