Journal of Innovative Optical Health Sciences, Volume. 14, Issue 2, 2150001(2021)
Assessment of myocardial viability using a minimally invasive laser Doppler flowmetry on pig model
[1] [1] A. F. Schinkel, D. Poldermans, A. Elhendy, J. J. Bax ,"Assessment of myocardial viability in patients with heart failure," J. Nucl. Med. 48(7), 1135–1146 (2007).
[2] [2] M. Becker, C. Zwicker, M. Kaminski, A. Napp, E. Altiok, C. Ocklenburg, Z. Friedman, D. Adam, P. Schauerte, "Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position," JACC: Cardiovasc. Imaging 4(4), 366–374 (2011).
[3] [3] L. Riedlbauchova, R. Brunken, W. A. Jaber, L. Popova, D. Patel, V. L_ansk_a, K. Civello, J. Cummings, J. D. Burkhardt ,"The impact of myocardial viability on the clinical outcome of cardiac resynchronization therapy," J. Cardiovasc. Electrophys. 20(1), 50–57 (2009).
[4] [4] C. Ypenburg, M. J. Schalij, G. B. Bleeker, P. Steendijk, E. Boersma, P. Dibbets-Schneider, M. P. Stokkel, E. E. van der Wall, J. J. Bax, "Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients," Eur. Heart J. 28(1), 33–41 (2006).
[5] [5] J. S. Woo, T. K. Yu, W. S. Kim, K. S. Kim, W. Kim, "Early prediction of myocardial viability after acute myocardial infarction by two-dimensional speckle tracking imaging," J. Geriatr. Cardiol. 12, 474–474 (2015).
[6] [6] T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC Press, 2014).
[7] [7] V. Rajan, B. Varghese, T. G. van Leeuwen, W. Steenbergen, "Review of methodological developments in laser Doppler flowmetry," Lasers Med. Sci. 24(2), 269–283 (2009).
[8] [8] A. Humeau, W. Steenbergen, H. Nilsson, T. Str€omberg, "Laser Doppler perfusion monitoring and imaging: Novel approaches," Med. Biol. Eng. Comput. 45(5), 421–435 (2007).
[9] [9] S. A. K?ser, P. M. Glauser, C. A. Maurer, "Venous small bowel infarction: Intraoperative laser Doppler flowmetry discriminates critical blood supply and spares bowel length," Case Rep. Med. 2012, 195926 (2012).
[10] [10] A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, E. U. Rafailov, "Novel measure for the calibration of laser doppler flowmetry devices," Design Qual. Biomed. Technol. VII 8936, 89360D (2014).
[11] [11] D. M. Hemingway, W. J. Angerson, J. H. Anderson, J. A. Goldberg, C. S. McArdle, T. G. Cooke, "Monitoring blood flow to colorectal liver metastases using laser Doppler flowmetry: The effect of angiotensin II," Br. J. Cancer 66(5), 958–960 (1992).
[12] [12] S. Palmer, S. G. Sokolovski, E. Rafailov, G. Nabi, "Technologic developments in the field of photonics for the detection of urinary bladder cancer," Clin. Genitourin. Cancer 11(4), 390–396 (2013).
[13] [13] B. Alsbj€orn, J. Micheels, B. S?rensen, "Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns," Scand. J. Plast. Reconstr. Surg. 18(1), 75–79 (1984).
[14] [14] N. Vongsavan, B. Matthews, "Some aspects of the use of laser Doppler flow meters for recording tissue blood flow," Exp. Phys.: Transl. Integr. 78(1), 1–14 (1993).
[15] [15] C. A. Redaelli, M. K. Schilling, M. W. Büchler, "Intraoperative laser Doppler flowmetry: A predictor of ischemic injury in acute mesenteric infarction," Dig. Surg. 15(1), 55–59 (1998).
[16] [16] M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O'Doherty, P. McNamara, G. E. Nilsson, "Biophotonic methods in microcirculation imaging," Med. Laser Appl. 22(2), 105–126 (2007).
[17] [17] A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, E. U. Rafailov, "Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices," J. Biomed. Opt. 18(10), 107009–107009 (2013).
[18] [18] B. Aldhoon, T. Kucera, N. Smorodinova, J. Martinek, V. Melenovsk?, J. Kautzner, "Associations between cardiac fibrosis and permanent atrial fibrillation in advanced heart failure," Physiol. Res. 62(3), 247 (2013).
[19] [19] T. J. Bunch, J. P. Weiss, B. G. Crandall, J. D. Day, J. P. DiMarco, J. D. Ferguson, P. K. Mason, G. McDaniel, J. S. Osborn, D. Wiggins et al.,"Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia," J. Cardiovasc. Electrophysiol. 21(6), 678–684 (2010).
[20] [20] D. E. Sosnovik, T. Geva,"Imaging the microstructure of the human fetal heart: An intriguing glimpse into our embryonic cardiac blueprint," Circ. Cardiovasc. Imaging 11, e008298 (2018).
[21] [21] N. Dana, L. D. Biase, A. Natale, S. Emelianov, R. Bouchard, "In vitro photoacoustic visualization of myocardial ablation lesions," Heart Rhythm. 11(1), 150–157 (2014).
[22] [22] S. Iskander-Rizk, P. Kruizinga, R. Beurskens, G. Springeling, F. Mastik, N. M. de Groot, P. Knops, A. F. van der Steen, G. van Soest, "Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium," Photoacoustics 16, 100150 (2019).
[23] [23] G. Rozen, L. Ptaszek, I. Zilberman, K. Cordaro, E. K. Heist, C. Beeckler, A. Altmann, Z. Ying, Z. Liu, J. N. Ruskin, "Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter," Heart Rhythm. 14(2), 248–254 (2017).
[24] [24] J. Swartling, S. P. P. Platonov, S. B. Olsson, S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
[25] [25] A. D'Avila, P. Gutierrez, M. Scanavacca, V. Reddy, D. L. Lustgarten, E. Sosa, J. A. F. Ramires, "Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: Implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia," Pacing Clin. Electrophysiol. 25(10), 1488–1495 (2002).
[26] [26] M. J. Leahy, F. F. M. D. Mul, G. E. Nilsson, R. Maniewski, "Principles and practice of the laser- Doppler perfusion technique," Technol. Health Care 7(2–3), 143–162 (1999).
[27] [27] M. G. D. Karlsson, H. Casimir-Ahn, U. L€onn, K. Wardell, "Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart," Med. Biol. Eng. Comput. 41(3), 255–262 (2003).
[28] [28] X.-F. Li, Y.-P. Wang, "Laser Doppler flowmetry for assessment of myocardial microperfusion in the beating rat heart," Vascul. Pharmacol. 46(3), 207–214 (2007).
[29] [29] M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, R. Maniewski, "Principles and practice of the laser- Doppler perfusion technique," Technol. Health Care 7(2–3), 143–162 (1999).
[30] [30] I. Fredriksson, M. Larsson, T. Str€omberg, "Measurement depth and volume in laser Doppler flowmetry," Microvasc. Res. 78(1), 4–13 (2009).
[31] [31] M. G. D. Karlsson, H. Casimir-Ahn, U. L€onn, K. W?rdell, "Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart," Med. Biol. Eng. Comput. 41(3), 255–262 (2003).
[32] [32] B. Bierbach, J. Scheewe, T. Derfuss, A. Krug, R. Schramm, M. Dahm, W. Kuroczynski, O. Kempski, G. Horstick, "Continuous regional myocardial blood flow measurement: Validation of a near-infrared laser Doppler device in a Porcine model," Microcirculation 19(6), 485–493 (2012).
[33] [33] M. Hellmann, J. Piotrowski, M. Kaszubowski, M. Dudziak, L. Anisimowicz, "Invasive assessment of the myocardial microcirculation during beating heart coronary artery bypass grafting," J. Clin. Med. 9(3), 663–663 (2020).
Get Citation
Copy Citation Text
Karina Litvinova, Berthold Stegemann, Francisco Leyva. Assessment of myocardial viability using a minimally invasive laser Doppler flowmetry on pig model[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150001
Received: Jul. 16, 2020
Accepted: Oct. 4, 2020
Published Online: Apr. 7, 2021
The Author Email: Litvinova Karina (k.litvinova@aston.ac.uk)