Electronics Optics & Control, Volume. 30, Issue 2, 63(2023)
Development of Small Target Detection Technology Based on Deep Learning
[3] [3] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
[4] [4] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[5] [5] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE, 2016:779-788.
[6] [6] LIU W, AUGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detector[C]//European Conference on Compu-ter Vision.Cham:Springer, 2016:21-37.
[9] [9] REDMON J, FARHADI A.YOLOv3:an incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT:IEEE, 2018:89-95.
[13] [13] ZHONG Z, ZHENG L, KANG G, et al.Random erasing data augmentation[C]//AAAI Conference on Artificial Intelligence.New York:AAAI, 2020:13001-13008.
[14] [14] CHEN P G, LIU S, ZHAO H S, et al.GridMask data augmentation[C/OL]//arXiv.[S.l.]:arXiv, 2020:arXiv:2001.04086.[2021-11-05].https://doi.org/10.48550/arXiv.2001.04086.
[15] [15] KISANTAL M, WOJNA Z, MURAWSKI J, et al.Augmentation for small object detection[C]//The 9th International Conference on Advances in Computing and Information Technology.Sydney:[s.n.], 2019:119-133.
[16] [16] CHEN Y K, ZHANG P Z, LI Z M, et al.Stitcher:feedback-driven data provider for object detection[C/OL]// arXiv.[S.l.]:arXiv, 2020:arXiv:2004.12432.[2021-11-10].https://doi.org/10.48550/arXiv.2004.12432.
[18] [18] BELL S, ZITNICK C L, BALA K, et al.Inside-outside net:detecting objects in context with skip pooling and recurrent neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE, 2016:2874-2883.
[19] [19] KONG T, YAO A B, CHEN Y R, et al.HyperNet:towards accurate region proposal generation and joint object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE, 2016:845-853.
[20] [20] LIN T Y, DOLLR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, HI:IEEE, 2017:2117-2125.
[22] [22] PANG J M, CHEN K, SHI J P, et al.Libra R-CNN:towards balanced learning for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Long Beach, CA:IEEE, 2019:821-830.
[23] [23] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[C/OL]// arXiv.[S.l.]:arXiv, 2020:arXiv:2004.10934.[2021-11-08].https://doi.org/10.48550/arXiv.2004.10934.
[24] [24] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT:IEEE, 2018:8759-8768.
[28] [28] LI J, LIANG X, WEI Y, et al.Perceptual generative adversarial networks for small object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, HI:IEEE, 2017:1222-1230.
[29] [29] BAI Y C, ZHANG Y Q, DING M L, et al.SOD-MTGAN:small object detection via multi-task generative adversa-rial network[C]//European Conference on Computer Vision.Cham:Springer, 2018:210-226.
[30] [30] ZHU Y S, ZHAO C Y, WANG J Q, et al.CoupleNet:coupling global structure with local parts for object detection[C]//IEEE International Conference on Computer Vision.Venice:IEEE, 2017:4146-4154.
[31] [31] LI Z M, CHEN Y L, YU G, et al.R-FCN++:towards accurate region-based fully convolutional networks for object detection[C]//AAAI Conference on Artificial In-telligence.New Orleans, LA:AAAI, 2018:7073-7080.
[32] [32] HU H, GU J Y, ZHANG Z, et al.Relation networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT:IEEE, 2018:3588-3597.
[33] [33] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT:IEEE, 2018:6154-6162.
[34] [34] LI A, YANG X, ZHANG C Y.Rethinking classification and localization for Cascade R-CNN[C]//BMVC.Cardiff, Wales:BMVC, 2019:arXiv:1907.11914.
[35] [35] GE Z, LIU S T, WANG F, et al.YOLOX:exceeding YOLO series in 2021[C/OL]//arXiv.[S.l.]:arXiv, 2021:arXiv:2107.08430.[2021-11-10].https://arxiv.org/pdf/2107.08430v2.pdf.
Get Citation
Copy Citation Text
ZHAO Jingbo, DU Baoshuai. Development of Small Target Detection Technology Based on Deep Learning[J]. Electronics Optics & Control, 2023, 30(2): 63
Category:
Received: Nov. 25, 2021
Accepted: --
Published Online: Apr. 3, 2023
The Author Email: