Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 607(2025)

Effect of Boron Content on Microstructure and Electromagnetic Properties of SiBCN Ceramics

CHEN Pingan1...2, HONG Sizeng1,2, LI Xiangcheng1,2,*, ZHU Yingli1,2, and CHEN Fu23 |Show fewer author(s)
Author Affiliations
  • 1The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • 2Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology, Wuhan 430081, China
  • 3School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • show less
    References(38)

    [1] [1] ZHAO B, SHAO G, FAN B B, et al. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure[J]. Phys Chem Chem Phys, 2015, 17(4): 2531-2539.

    [2] [2] ZHONG B, SAI T Q, XIA L, et al. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption[J]. Mater Des, 2017, 121: 185-193.

    [3] [3] ZHOU C, MIN H, YANG L, et al. Dimethylaminoborane-modified copolysilazane as a novel precursor for high-temperature resistant SiBCN ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3579-3589.

    [4] [4] ZHU W X, CHEN Z W, LIANG J, et al. A laminated carbon nanotubes/silicon boron carbonitride film for high-efficiency electromagnetic interference shielding with oxidation resistance[J]. Carbon, 2022, 197: 65-75.

    [5] [5] CHEN J X, CHEN P G, LI X C, et al. Enhancement of electromagnetic attenuation of network CNT-Carbon microsphere nanocomposites derived from phenolic resin[J]. Carbon, 2024, 219: 118789.

    [6] [6] HU S H, CHEN P G, LI X C, et al. A competitive reaction strategy toward dielectric phases for enhancing electromagnetic wave absorption of polymer-derived ceramics[J]. J Mater Chem A, 2024, 12(30): 19298-19309.

    [7] [7] YANG Z H, JIA D C, ZHOU Y, et al. Processing and characterization of SiB0.5C1.5N0.5 produced by mechanical alloying and subsequent spark plasma sintering[J]. Mater Sci Eng A, 2008, 488(1-2): 241-246.

    [8] [8] YU Z J, ZHOU C, LI R, et al. Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic[J]. Ceram Int, 2012, 38(6): 4635-4643.

    [9] [9] YUAN X Y, CHENG L F, ZHANG Y J, et al. Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation[J]. Mater Des, 2016, 92: 563-570.

    [10] [10] ZHANG M, CHEN Q Q, HE Y P, et al. A comparative study on high temperature oxidation behavior of SiC, SiC-BN and SiBCN monoliths[J]. Corros Sci, 2021, 192: 109855.

    [11] [11] ZHANG P F, JIA D C, YANG Z H, et al. Influence of ball milling parameters on the structure of the mechanically alloyed SiBCN powder[J]. Ceram Int, 2013, 39(2): 1963-1969.

    [12] [12] ZHANG Z B, ZENG F, HAN J J, et al. Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics[J]. J Mater Sci, 2011, 46(18): 5940-5947.

    [13] [13] YANG Z H, JIA D C, DUAN X M, et al. Microstructure and thermal stabilities in various atmospheres of SiB0.5C1.5N0.5 nano-sized powders fabricated by mechanical alloying technique[J]. J Non Cryst Solids, 2010, 356(6-8): 326-333.

    [14] [14] JIANG J P, YAN L W, XUE Y J, et al. Lightweight and thermally insulating polymer-derived SiBCN/SiCnw ceramic aerogel with enhanced electromagnetic wave absorbing performance[J]. Chem Eng J, 2024, 482: 148878.

    [15] [15] YU Z, MA M W, LIU Z Y, et al. Hyperbranched polyborosilazanes derived SiBCN ceramic for high-temperature wave-transparent performance[J]. J Mater Sci Technol, 2024, 196: 162-170.

    [17] [17] WANG H J, CHEN Z W, SU D. Lightweight and large-scale rGO reinforced SiBCN aerogels with hierarchical cellular structures exposed to high-temperature environments[J]. J Mater Sci Technol, 2024, 179: 145-154.

    [18] [18] WANG Y, LUO C J, WU Y F, et al. High temperature stable, amorphous SiBCN microwave absorption ceramics with tunable carbon structures derived from divinylbenzene crosslinked hyperbranched polyborosilazane[J]. Carbon, 2023, 213: 118189.

    [19] [19] WEN Q B, YU Z J, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109: 100623.

    [22] [22] LIU C Y, YU D W, KIRK D, et al. Electromagnetic wave absorption of silicon carbide based materials[J]. RSC Adv, 2017, 7(2): 595-605.

    [23] [23] LIU H Q, ZHANG Y B, LIU X M, et al. Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption[J]. Chem Eng J, 2022, 433: 133743.

    [24] [24] LUO C J, MIAO P, TANG Y S, et al. Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature[J]. Chin J Aeronaut, 2021, 34(11): 277-291.

    [25] [25] LYU Y, CHENG Y, ZHAO G D, et al. Modification of SiBCN by Zr atom and its effect on ablative resistance of Cf/SiBCN(Zr) composites[J]. Compos Part B Eng, 2023, 253: 110511.

    [26] [26] SONG Y, LIU P, ZHOU R, et al. SiBNCx ceramics derived from single source polymeric precursor with controllable carbon structures for highly efficient electromagnetic wave absorption at high temperature[J]. Carbon, 2022, 188: 12-24.

    [27] [27] CHEN P G, CHEN J X, WANG C G, et al. The heterointerface of graphene in situ growth for enhanced microwave attenuation properties in La-doped SiBCN ceramics[J]. Ceram Int, 2023, 49(16): 26642-26653.

    [28] [28] CHEN P G, LI W, LI X C, et al. Effect of boron content on the microstructure and electromagnetic properties of SiBCN ceramics[J]. Ceram Int, 2022, 48(3): 3037-3050.

    [29] [29] LI W, LI X C, GONG W, et al. Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics[J]. Ceram Int, 2020, 46(6): 7823-7832.

    [30] [30] WANG C G, CHEN P G, LI X C, et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics[J]. ACS Appl Mater Interfaces, 2021, 13(46): 55440-55453.

    [31] [31] KONG J, WANG M J, ZOU J H, et al. Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics[J]. ACS Appl Mater Interfaces, 2015, 7(12): 6733-6744.

    [32] [32] JI X Y, SHAO C W, WANG H, et al. A simple and efficient method for the synthesis of SiBNC ceramics with different Si/B atomic ratios[J]. Ceram Int, 2017, 43(10): 7469-7476.

    [33] [33] DING Q, YANG J H, GU S J, et al. Novel fire-resistant SiBCN fiber paper with efficient electromagnetic interference shielding and Joule-heating performance[J]. Chem Eng J, 2024, 497: 154485.

    [34] [34] DUAN L T, LI T H, ZHAO Y Z, et al. Polyborosilazane with broadly tunable boron content for SiBCN ceramics[J]. Inorg Chem, 2023, 62(25): 10014-10020.

    [35] [35] CHEN Q Q, LI D X, YANG Z H, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance[J]. Carbon, 2021, 179: 180-189.

    [36] [36] QIAO M K, LI X C, CHEN P G, et al. Enhanced microwave absorption of refractory SiBCN metamaterials[J]. J Am Ceram Soc, 2024, 107(5): 3360-3367.

    [37] [37] SUN X Y, LI X C, CHEN P G, et al. Construction of urchin-like multiple core-shelled Co/CoS2@NC@MoS2 composites for effective microwave absorption[J]. J Alloys Compd, 2023, 936: 168243.

    [38] [38] DING J X, CHEN F B, CHEN J X, et al. MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance[J]. J Am Ceram Soc, 2021, 104(4): 1772-1784.

    [39] [39] GIRGERT R, GRNDKER C, EMONS G, et al. Electromagnetic fields alter the expression of estrogen receptor cofactors in breast cancer cells[J]. Bioelectromagnetics, 2008, 29(3): 169-176.

    [40] [40] SUN X Y, LI Y X, LI X C, et al. Rational design of a core-shelled Ti3AlC2@La2Zr2O7 composite for high-temperature broadband microwave absorption[J]. ACS Appl Mater Interfaces, 2023, 15(51): 59895-59904.

    [41] [41] LEE J, BUTT D P, BANEY R H, et al. Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic[J]. J Non Cryst Solids, 2005, 351(37-39): 2995-3005.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Pingan, HONG Sizeng, LI Xiangcheng, ZHU Yingli, CHEN Fu. Effect of Boron Content on Microstructure and Electromagnetic Properties of SiBCN Ceramics[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 607

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 29, 2024

    Accepted: Mar. 10, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Xiangcheng LI (lixiangcheng@wust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240569

    Topics