Optics and Precision Engineering, Volume. 25, Issue 5, 1159(2017)
Single-view XLCT imaging based on fast Bayesian matching pursuit
[1] [1] PRATX G, CARPENTER C M, SUN C, et al.. Tomographic molecular imaging of X-ray-excitable nanoparticles [J]. Optics Letters, 2010, 35(20): 3345-3347.
[2] [2] LI C Q, DI K, BEC J, et al.. X-ray luminescence optical tomography imaging: experimental studies [J]. Optics Letters, 2013, 38(13): 2339-2341.
[3] [3] CONG W X, SHEN H O, WANG G. Spectrally resolving and scattering-compensated X-ray luminescence/fluorescence computed tomography [J]. Journal of Biomedical Optics, 2011, 16(6): 066014.
[4] [4] AHMAD M, PRATX G, BAZALOVA M, et al.. X-Ray luminescence and X-Ray fluorescence computed tomography: new molecular imaging modalities [J]. IEEE Access, 2014, 2: 1051-1061.
[5] [5] PRATX G, CARPENTER C M, SUN C, et al.. X-ray luminescence computed tomography via selective excitation: a feasibility study [J]. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992-1999.
[6] [6] SEFERIS I, MICHAIL C, VALAIS I, et al.. Imaging performance of a thin Lu2O3∶Eu nanophosphor scintillating screen coupled to a high resolution CMOS sensor under X-ray radiographic conditions: comparison with Gd2O2S: Eu conventional phosphor screen [J]. SPIE, 2014, 9033: 90333T.
[7] [7] SUN C, PRATX G, CARPENTER C M, et al.. Synthesis and radioluminescence of PEGylated Eu3+-doped nanophosphors as bioimaging probes [J]. Advanced Materials, 2011, 23(24): H195-H199.
[8] [8] CONG W X, WANG G, KUMAR D, et al.. Practical reconstruction method for bioluminescence tomography [J]. Optics Express, 2005, 13(18): 6756-6771.
[9] [9] JIN CH, GUO H B, HOU Y Q, et al.. Biolunminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation [J]. Acta Optica Sinica, 2014, 34(6): 617001.(in Chinese)
[10] [10] GUO H B, HE X W, HOU Y Q, et al.. Fluorescence molecular tomography based on nonconvex sparse regularization [J].Acta Optica Sinica, 2014, 34(6): 717001.(in Chinese)
[12] [12] CHEN D M, ZHU S P, YI H J, et al..Cone beam x-ray luminescence computed tomography: a feasibility study [J]. Medical Physics, 2013, 40(3): 031111.
[13] [13] CHEN D M, ZHU S P, CHEN X L, et al.. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging [J]. Applied Physics Letters, 2014, 105(19): 191104.
[14] [14] CHEN D M, ZHU S P, CAO X, et al.. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method [J]. Biomedical Optics Express, 2015, 6(7): 2649-2663.
[15] [15] LIU X, LIAO Q M, WANG H K. Fast X-ray luminescence computed tomography imaging[J]. IEEE Transactions on Bio-medical Engineering, 2014, 61(6): 1621-1627.
[16] [16] LIU X, LIAO Q M, WANG H K, et al.. Excitation-resolved cone-beam X-ray luminescence tomography [J]. Journal of Biomedical Optics, 2015, 20(7): 070501.
[17] [17] LIU X, WANG H K, XU M T, et al.. A wavelet-based single-view reconstruction approach for cone beam X-ray luminescence tomography imaging [J]. Biomedical Optics Express, 2014, 5(11): 3848-3858.
[18] [18] SCHNITER P, POTTER L C, ZINIEL J. Fast bayesian matching pursuit[C].Proceedings of Information Theory and Applications Workshop, IEEE, 2008: 326-333.
[19] [19] DONG F, HOU Y Q, YU J J, et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 11701.(in Chinese)
[20] [20] KLOSE A D, NTZIACHRISTOS V, HIELSCHER A H. The inverse source problem based on the radiative transfer equation in optical molecular imaging[J]. Journal of Computational Physics, 2005, 202(1): 323-345.
[21] [21] SCHWEIGER M, ARRIDGE S R, HIRAOKA M, et al.. The finite element method for the propagation of light in scattering media: boundary and source conditions [J]. Medical Physics, 1995, 22(11): 1779-1792.
[22] [22] HE X W, LIANG J M, WANG X R, et al.. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.
[23] [23] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C].Proceedings of 1993 Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, IEEE, 1995, 1: 1-3.
[24] [24] MALLAT S G, ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
[25] [25] DOGDAS B, STOUT D, CHATZIIOANNOU A F, et al.. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine and Biology, 2007, 52(3): 577-587.
Get Citation
Copy Citation Text
HOU Yu-qing, QU Xuan, ZHANG Hai-bo, YI Huang-jian, HE Xiao-wei. Single-view XLCT imaging based on fast Bayesian matching pursuit[J]. Optics and Precision Engineering, 2017, 25(5): 1159
Category:
Received: Dec. 13, 2016
Accepted: --
Published Online: Jun. 30, 2017
The Author Email: Yu-qing HOU (houyuqin@nwu.edu.cn)