Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 52(2025)
Research of terahertz frequency tunable coding metasurface based on perovskite materials
[1] S Ghafoor, N Boujnah, M H Rehmani. Tutorials, MAC protocols for terahertz communication: A comprehensive survey. IEEE Communications Surveys, 22, 2236-2282(2020).
[2] G Valušis, A Lisauskas, H Yuan, W Knap, H G Roskos. Roadmap of terahertz imaging. Sensors, 21, 4092(2021).
[3] H Song. -J and Lee N. Technology, Terahertz communications: Challenges in the next decade. IEEE Trans. Terahertz Sci. Technol, 12, 105-117(2021).
[4] Y F Li, R Yang et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials. High Power Laser and Particle Beams.
[5] C Zhou, X Peng. -q, Li. Graphene-embedded coding metasurface for dynamic terahertz manipulation. Optik, 216, 164937(2020).
[6] R Wang, B Deng, H Wang, F Zhou. JApplications, Scattering cross section of rough metallic spheres at terahertz frequencies. Journal of Electromagnetic Waves, 36, 1-17(2022).
[7] A Satapathy, K K Sawant, S Mondal. Recent progress on MXenes as an attenuator of terahertz radiation[, 52, 1749-1768(2023).
[8] K Ri. -J,Kim J.-S,Kim J.-H, Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring. Opt. Commun, 542, 129573(2023).
[9] X Wang, Z Xiao, X Wang, X Miao, X Jiang, Tunable and switchable common-frequency broadband terahertz absorption . reflection and transmission based on graphene-photosensitive silicon metamaterials. Opt. Commun, 541, 129555(2023).
[10] X Ni, Z Liu, F Gu, M Pacheco, J Borneman, PhotonicsSHA-2D . Modeling of Single-Period Multilayer Optical Gratings and Metamaterials. Computational program(2009).
[11] J J Yu, Y Xie et al. State-of-art of Metamaterials with Negative Poisson's Ratio[J] Journal of Mechanical Engineering(于靖军,谢岩,负泊松比超材料研究进展. 机械工程学报), 54, 1-14(2018).
[12] Z Zhang, H Pang, A Georgiadis, Wireless power transfer—An overview . IEEE Trans. Ind. Electron., 66, 1044-1058(2018).
[13] X Yan, M Yang, Z Zhang, Liang , Bioelectronics . The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors, 126, 485-492(2019).
[14] L Bai, X G Zhang, W X Jiang. Research progress of light-controlled electromagnetic metamaterials.
[15] J Li, J Li, C Zheng et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon, 172, 189-199(2021).
[16] L Zhang, X Q Chen, Y N Zheng et al. Electromagnetic metasurfaces and information metasurfaces. Chinese journal of radio science(张磊, 36, 817-828(2021).
[17] C B Guo, Z Zhao, W K Xu. Research advances of acoustic Metasurfaces. Science Technology and Engineering.
[18] N Yu, P Genevet et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. science, 334, 333-337(2011).
[19] L Li, H Ruan et al. Machine-learning reprogrammable metasurface imager. Nature communications, 10, 1082(2019).
[20] J Zhao, X Yang et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems, 6, 231-238(2019).
[21] Q Li, M Gupta et al. Active control of asymmetric Fano resonances with graphene-silicon-integrated terahertz metamaterials. Adv. Mater. Technol, 5, 1900840(2020).
[22] L Cong, R Singh et al. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv. Mater, 32, 2001418(2020).
[23] G. -B, Wu, J Y, Dai et al. Sideband-free space–time-coding metasurface antennas. Nat. Electron, 5, 808-819(2022).
[24] Y Saifullah, Y He et al. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications. Adv. Sci, 9, 2203747(2022).
[25] X Yao, Y L Ding, X D Zhang et al. A review of the perovskite solar cells. Acta Phys. Sin[J](姚鑫,丁艳丽,张晓丹, 钙钛矿太阳电池综述. 物理学报), 64, 038404(2015).
[26] Y Zhang, J Du et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS applied materials, 7, 21634-21638(2015).
[27] C Li, C Han et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater, 172, 341-346(2017).
[28] Y Zhao, C Li, Recent advances on organic‐inorganic hybrid perovskite photodetectors with fast response . InfoMat, 1, 164-182(2019).
[29] N Soleimanioun, M Rani et al. Potential replacement to lead: Alkali metal potassium and transition metal zinc in organo-metal halide perovskite materials. Journal of Alloys, 861, 158207(2021).
[30] C Tyznik, J Lee et al. Interfaces, Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency. ACS Applied Materials, 13, 10231-10238(2021).
[31] G. -B, Wu, J Y, Dai et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat. Commun, 14, 5155(2023).
[32] M Chen, Y Wang et al. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity. ACS Nano, 16, 17263-17273(2022).
[33] J N Wilson, J M Frost et al. Dielectric and ferroic properties of metal halide perovskites. APL Mater, 7, 010901(2019).
[34] Y Li, Y Zhang et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors. Nano Lett, 20, 5646-5654(2020).
[35] M J Hong, L Zhu et al. Time-resolved changes in dielectric constant of metal halide perovskites under illumination. Am. Chem. Soc, 142, 19799-19803(2020).
[36] R A Awni, Z Song et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule, 4, 644-657(2020).
[37] M Chen, Z Zhao et al. Novel Terahertz Spectrum-Measurement Method Based on Spectral Encoding. Laser & Optoelectronics Progress.
[38] T J Cui, M Q Qi et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: science, 3, e218-e218(2014).
[39] X Yan, L J Liang et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies.. Acta Phys. Sin.
[40] F Monticone, N M Estakhri et al. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett, 110, 203903(2013).
Get Citation
Copy Citation Text
Yi-Fan LI, He YANG, Rui YANG, Yi-Ming JIA, Jia-Min HU, Cun-Guang LOU, Yu YU, Xiu-Ling LIU, Jian-Quan YAO. Research of terahertz frequency tunable coding metasurface based on perovskite materials[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 52
Category: Millimeter Wave and Terahertz Technology
Received: May. 16, 2024
Accepted: --
Published Online: Mar. 5, 2025
The Author Email: LI Yi-Fan (yifanli@tju.edu.cn)