Optics and Precision Engineering, Volume. 28, Issue 6, 1404(2020)

Recurrent neural network multi-label aerial images classification

CHEN Ke-jun1,2 and ZHANG Ye1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(20)

    [6] [6] ZEGGADA A, BENBRAIKA S, MELGANI F, et al.. Multi-label conditional random field classification for UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 399-403.

              ZEGGADA A, BENBRAIKA S, MELGANI F, et al.. Multi-label conditional random field classification for UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 399-403.

    [7] [7] KODA S, ZEGGADA A, MELGANI F, et al.. Spatial and structured SVM for multi-label image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5948-5960.

              KODA S, ZEGGADA A, MELGANI F, et al.. Spatial and structured SVM for multi-label image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5948-5960.

    [9] [9] ACHANTA R, SHAJI A, SMITH K, et al.. SLIC superpixel compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

              ACHANTA R, SHAJI A, SMITH K, et al.. SLIC superpixel compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

    [10] [10] HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

              HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

    [11] [11] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. Arxiv Preprint Arxiv: 1502.03167, 2015.

              IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. Arxiv Preprint Arxiv: 1502.03167, 2015.

    [12] [12] CHAUDHURI B, DEMIR B, CHAUDHURI S, et al.. Multi-label remote sensing image retrieval using a semi-supervised graph-theoretic method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):1144-1158.

              CHAUDHURI B, DEMIR B, CHAUDHURI S, et al.. Multi-label remote sensing image retrieval using a semi-supervised graph-theoretic method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):1144-1158.

    [13] [13] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010: 270-279.

              YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010: 270-279.

    [14] [14] HUA Y, MOU L, ZHU X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 149: 188-199.

              HUA Y, MOU L, ZHU X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 149: 188-199.

    [15] [15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.

              HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.

    [16] [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv Preprint Arxiv: 1409.1556, 2014.

              SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv Preprint Arxiv: 1409.1556, 2014.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Ke-jun, ZHANG Ye. Recurrent neural network multi-label aerial images classification[J]. Optics and Precision Engineering, 2020, 28(6): 1404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 2, 2019

    Accepted: --

    Published Online: Jun. 4, 2020

    The Author Email: Ye ZHANG (yolanda@spirit.ai)

    DOI:10.3788/ope.20202806.1404

    Topics