Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 993(2024)

Infrared Transparent Ceramics for Windows

LI Kai, FAN Jintai*, JIANG Benxue, QIAN Kaichen, TIAN Yanna, and YIN Xiaomeng
Author Affiliations
  • [in Chinese]
  • show less
    References(101)

    [2] [2] HAN Chao. Ship Electron Eng, 2009, 29(6): 43-46.

    [4] [4] PAN Zhifeng, MAO Xiaojian, ZHANG Honggang, et al. Laser Optoelectron Prog, 2014, 51(9): 153-159.

    [5] [5] LIU X, WANG X Z, ZHU J Q, et al. Thermal-mechanical response of microscale functional film for infrared window[J]. Trans Nonferrous Met Soc China, 2014, 24(6): 1791-1799.

    [6] [6] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photon, 2008, 2(12): 721-727.

    [8] [8] FAN Zhigang, LIU Jianjun, XIAO Haosu, et al. J Chin Ceram Soc, 2011, 39(5): 880-891.

    [9] [9] MOGILEVSKY R, SHARAFUTDINOVA L G, MITTL S D. Optical properties of sapphire[C]//SPIE Proceedings, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II. San Diego, CA. SPIE, 2008: 70560B(1-12).

    [11] [11] LI Jinquan, SU Xiaoping, NA Mujilatu, et al. J Synth Cryst, 2007, 36(2): 467-474.

    [12] [12] WANG G G, ZHANG M F, HAN J C, et al. High-temperature infrared and dielectric properties of large sapphire crystal for seeker dome application[J]. Cryst Res Technol, 2008, 43(5): 531-536.

    [14] [14] Fan Jintai, XU Yangyang, TAN Xianpeng, et al. Infrared Technology, 2017, 39(10): 951-957.

    [15] [15] HARRIS D C. Durable 3-5 μm transmitting infrared window materials[J]. Infrared Phys Technol, 1998, 39(4): 185-201.

    [17] [17] FENG Liping, LIU Zhengtang, MEI Hui, et al. Mater Rev, 2004, 18(5): 5-7.

    [18] [18] HARRIS D C. Materials for Infrared Windows and Domes[M]. Washington: SPIE - The International Society for Optical Engineering, 2001:44-45.

    [20] [20] LI Jiang, PAN (Yu)(Bai|Bo), LIU Jue, et al. J Chin Ceram Soc, 2009, 37(2): 270-274.

    [22] [22] SHAN Meng, ZHOU Guohong, WANG Shiwei. J Inorg Mater, 2008, 23(5): 1001-1004.

    [23] [23] MAO X J, WANG S W, SHIMAI S, et al. Transparent polycrystalline alumina ceramics with orientated optical axes[J]. J Am Ceram Soc, 2008, 91(10): 3431-3433.

    [24] [24] ASHIKAGA T, KIM B N, KIYONO H, et al. Effect of crystallographic orientation on transparency of alumina prepared using magnetic alignment and SPS[J]. J Eur Ceram Soc, 2018, 38(7): 2735-2741.

    [25] [25] HARRIS D C. History of development of polycrystalline optical spinel in the U.S[C]//Defense and Security. Proc SPIE 5786, Window and Dome Technologies and Materials IX, Orlando, Florida, USA. 2005, 5786: 1-22.

    [26] [26] MORITA K, KIM B N, YOSHIDA H, et al. Spark-plasma-sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal[J]. J Am Ceram Soc, 2009, 92(6): 1208-1216.

    [27] [27] SHELDON R I, HARTMANN T, SICKAFUS K E, et al. Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO·xAl2O3[J]. J Am Ceram Soc, 1999, 82(12): 3293-3298.

    [29] [29] LI Fahui, LIN Hong, LI Junfeng, et al. J Inorg Mater, 2012, 27(4): 417-421.

    [30] [30] GANESH I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications[J]. Int Mater Rev, 2013, 58(2): 63-112.

    [32] [32] DUAN Jinxia, WANG Chengmin, WANG Xiuhui, et al. Powder Metall Technol, 2017, 35(5): 358-362.

    [33] [33] BARUAH B, BHATTACHARYYA S, SARKAR R. Synthesis of magnesium aluminate spinel—An overview[J]. Int J Appl Ceram Technol, 2023, 20(3): 1331-1349.

    [34] [34] SENINA M O, LEMESHEV D O, VERSHININ D I, et al. Effect of B2O3 concentration on the properties of transparent magnesium aluminate spinel ceramics[J]. Inorg Mater, 2019, 55(8): 846-850.

    [35] [35] QUAN Z H, WANG Z F, WANG X T, et al. Effect of CeO2 addition on the sintering behavior of pre-synthesized magnesium aluminate spinel ceramic powders[J]. Ceram Int, 2019, 45(1): 488-493.

    [36] [36] IKESUE A, AUNG Y L. Advanced spinel ceramics with highest VUV-vis transparency[J]. J Eur Ceram Soc, 2020, 40(6): 2432-2438.

    [37] [37] LI L A. Study on properties of Mg-Al spinel ceramics prepared by casting sintering method[J]. Integr Ferroelectr, 2021, 217(1): 27-40.

    [38] [38] YANG J Y, WANG H, TU B T, et al. Preparation and optical properties of highly transparent MgAl1.9Ga0.1O4 ceramics via aqueous gel-casting method[J]. J Eur Ceram Soc, 2023, 43(10): 4506-4516.

    [40] [40] HUANG Cunxin, LEI Muyun, PENG Zaixue, et al. J Synth Cryst, 2001, 30(1): 67-71.

    [41] [41] HARTNETT T M, BERNSTEIN S D, MAGUIRE E A, et al. Optical properties of ALON (aluminum oxynitride)[C]//AeroSense 97. Proc SPIE 3060, Window and Dome Technologies and Materials V, Orlando, FL, USA. 1997, 3060: 284-295.

    [43] [43] LU Shuai, ZHOU Youfu, SU Mingyi, et al. Adv Ceram, 2017, 38(2): 85-95.

    [44] [44] JIN X H, GAO L, SUN J, et al. Highly transparent AlON pressurelessly sintered from powder synthesized by a novel carbothermal nitridation method[J]. J Am Ceram Soc, 2012, 95(9): 2801-2807.

    [45] [45] SHAN Y C, XU J X, WANG G, et al. A fast pressureless sintering method for transparent AlON ceramics by using a bimodal particle size distribution powder[J]. Ceram Int, 2015, 41(3): 3992-3998.

    [46] [46] GUO H, YANG S X, CHEN H T, et al. Effects of AlN content on mechanical and optical properties of AlON transparent ceramics[J]. Ceram Int, 2020, 46(10): 16677-16683.

    [47] [47] LIU X, WANG H, TU B T, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic prepared by pressureless sintering[J]. J Am Ceram Soc, 2014, 97(1): 63-66.

    [48] [48] ZONG X, WANG H, GU H G, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP[J]. J Am Ceram Soc, 2019, 102(11): 6507-6516.

    [49] [49] ZONG X, WANG H, GU H G, et al. A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire[J]. Scr Mater, 2020, 178: 428-432.

    [50] [50] LIU Q, JIANG N, LI J, et al. Highly transparent AlON ceramics sintered from powder synthesized by carbothermal reduction nitridation[J]. Ceram Int, 2016, 42(7): 8290-8295.

    [51] [51] JIANG N, LIU Q, XIE T F, et al. Fabrication of highly transparent AlON ceramics by hot isostatic pressing post-treatment[J]. J Eur Ceram Soc, 2017, 37(13): 4213-4216.

    [52] [52] SHAN Y C, MA L Y, SUN X N, et al. Fast fabrication of AlON ceramics with ultra-high transmittance by the assistance of hot isostatic pressing treatment[J]. J Eur Ceram Soc, 2022, 42(13): 5538-5544.

    [53] [53] MIN J H, LEE J, YOON D H. Fabrication of transparent γ-AlON by direct 2-step pressureless sintering of Al2O3 and AlN using an AlN-deficient composition[J]. J Eur Ceram Soc, 2019, 39(15): 4673-4679.

    [54] [54] FENG Z, QI J Q, GUO X F, et al. A new and highly active sintering additive: SiO2 for highly-transparent AlON ceramic[J]. J Alloys Compd, 2019, 787: 254-259.

    [55] [55] LI J M, ZHANG B H, TIAN R, et al. Hot isostatic pressing of transparent AlON ceramics assisted by dissolution of gas inclusions[J]. J Eur Ceram Soc, 2021, 41(7): 4327-4336.

    [56] [56] LIU L H, ZHANG C N, TAKAHASHI K, et al. Uniform and fine Mg-γ-AlON powders prepared from MgAl2O4: A promising precursor material for highly-transparent Mg-γ-AlON ceramics[J]. J Eur Ceram Soc, 2019, 39(4): 928-933.

    [57] [57] FENG Z, HUANG X, CHEN D, et al. Pressureless sintering of transparent AlON ceramic with assimilable γ-Al2O3 as sintering promoting additives[J]. J Am Ceram Soc, 2022, 105(5): 3189-3196.

    [58] [58] MA L Y, SUN X N, GUO H R, et al. Study on robust additive of CaCO3 for fast fabrication of highly transparent AlON ceramics by pressureless sintering[J]. J Am Ceram Soc, 2023, 106(8): 4770-4784.

    [59] [59] AN L Q, SHI R W, MAO X J, et al. Fabrication of AlON transparent ceramics with Si3N4 sintering additive[J]. J Adv Ceram, 2023, 12(7): 1361-1370.

    [60] [60] THOMAS M E, JOSEPH R I, TROPF W J. Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency[J]. Appl Opt, 1988, 27(2): 239-245.

    [61] [61] BRISSETTE L A, BURNETT P L, SPRIGGS R M, et al. Thermomechanically deformed Y2O3[J]. J Am Ceram Soc, 1966, 49(3): 165-166.

    [63] [63] JIN Lingling, JIANG Zhijun, ZHANG Jian, et al. J Chin Ceram Soc, 2010, 38(3): 521-526.

    [64] [64] GAN L, PARK Y J, KIM H, et al. Fabrication of submicron-grained IR-transparent Y2O3 ceramics from commercial nano-raw powders[J]. Ceram Int, 2015, 41(9): 11992-11998.

    [65] [65] HAJIZADEH-OGHAZ M, RAZAVI R S, BAREKAT M, et al. Synthesis and characterization of Y2O3 nanoparticles by sol-gel process for transparent ceramics applications[J]. J Sol Gel Sci Technol, 2016, 78(3): 682-691.

    [66] [66] LI X K, MAO X J, FENG M H, et al. Fabrication of transparent La-doped Y2O3 ceramics using different La2O3 precursors[J]. J Eur Ceram Soc, 2016, 36(10): 2549-2553.

    [67] [67] LI X K, ZHU Q Q, XU Y Y, et al. Optical and thermal properties of TiO2-doped Y2O3 transparent ceramics synthesized by hot isostatic pressing[J]. J Am Ceram Soc, 2019, 102(4): 2021-2028.

    [68] [68] LIU L K, ZHU Q H, ZHU Q Q, et al. Fabrication of fine-grained undoped Y2O3 transparent ceramic using nitrate pyrogenation synthesized nanopowders[J]. Ceram Int, 2019, 45(5): 5339-5345.

    [70] [70] SHI Keshun. Bull Chin Ceram Soc, 1988, 7(1): 47-57.

    [71] [71] RICE R W, SPANN J R, MCDONOUGH W J, et al. PARTIALLY STABILIZED ZRO2 AS A POSSIBLE IR DOME MATERIAL[J]. Proceed Soc Photo-Opt Instrum Eng, 1984, 505: 171-178.

    [72] [72] WANG C F, MAO X J, PENG Y P, et al. Preparation and optical properties of infrared transparent 3Y-TZP ceramics[J]. Materials, 2017, 10(4): 390.

    [73] [73] HU X, JIANG X W, CHEN S L, et al. Fabrication of infrared-transparent 3Y-TZP ceramics with small grain size by pre-sintering in an oxygen atmosphere and hot isostatic pressing[J]. Ceram Int, 2018, 44(2): 2093-2097.

    [75] [75] CHEN Hetuo, MAO Xiaojian, ZHOU Guohong, et al. Medium-wave infrared transparent zirconia ceramic material and preparation method thereof (in Chinese). CN 114349500A. 2022-04-15.

    [76] [76] LI B N, XUE Z X, JIANG B X, et al. 3D printing of infrared transparent ceramics via material extrusion[J]. Addit Manuf, 2023, 61: 103364.

    [77] [77] DVILIS é S, PAIGIN V D, STEPANOV S A, et al. Effect of spark plasma sintering temperature on the properties of transparent YSZ ceramics[J]. Refract Ind Ceram, 2019, 60(2): 154-159.

    [78] [78] BUCKNER D A, HAFNER H C, KREIDL N J. Hot-pressing magnesium fluoride[J]. J Am Ceram Soc, 1962, 45(9): 435-438.

    [80] [80] ZHOU Jinsong, LV Ke, ZHU Haifeng, et al. Bull Chin Ceram Soc, 2010, 29(4): 888-892.

    [81] [81] KOLESNICHENKO V G, ZAMULA M V, YURCHENKO Y V, et al. Spark plasma sintering of magnesium fluoride nanopowders[J]. Powder Metall Met Ceram, 2019, 58(7/8): 406-415.

    [82] [82] TAVAKOLI M, MOVAHEDI B, ALHAJI A. Fluorination synthesis of MgF2 nanoparticles synthesized for manufacturing IR windows by hot-pressing[J]. Ceram Int, 2021, 47(15): 21285-21292.

    [86] [86] WANG Lulu, LIU Youruo, JI Liekong, et al. Inorg Chem Ind, 2004, 36(1): 41-42.

    [88] [88] LI Jiang, JIANG Nan, XU Shengquan, et al. J Chin Ceram Soc, 2016, 44(9): 1302-1314.

    [89] [89] STEFANIK T, GENTILMAN R, HOGAN P. Nano-composite optical ceramics for infrared windows and domes[C]//Defense and Security Symposium. Proc SPIE 6545, Window and Dome Technologies and Materials X, Orlando, Florida, USA. 2007, 6545: 94-98.

    [90] [90] WISCOMBE W J. Improved Mie scattering algorithms[J]. Appl Opt, 1980, 19(9): 1505-1509.

    [91] [91] APETZ R, VAN BRUGGEN M P B. Transparent alumina: A light-scattering model[J]. J Am Ceram Soc, 2003, 86(3): 480-486.

    [92] [92] HARRIS D C, CAMBREA L R, JOHNSON L F, et al. Properties of an infrared-transparent MgO:Y2O3 nanocomposite[J]. J Am Ceram Soc, 2013, 96(12): 3828-3835.

    [93] [93] KUNA L, MANGERI J, GORZKOWSKI E P, et al. Mesoscale modeling of polycrystalline light transmission[J]. Acta Mater, 2019, 175: 82-89.

    [94] [94] JIANG D T, MUKHERJEE A K. Spark plasma sintering of an infrared-transparent Y2O3-MgO nanocomposite[J]. J Am Ceram Soc, 2010, 93(3): 769-773.

    [95] [95] MUOTO C K, JORDAN E H, GELL M, et al. Phase homogeneity in Y2O3-MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions[J]. J Am Ceram Soc, 2011, 94(12): 4207-4217.

    [96] [96] JIANG D T, MUKHERJEE A K. Synthesis of Y2O3-MgO nanopowder and infrared transmission of the sintered nanocomposite[C]//SPIE Proceedings, Nanophotonic Materials V. San Diego, California, USA. SPIE, 2008, 703007: 1-6.

    [97] [97] MA H J, JUNG W K, BAEK C, et al. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite[J]. J Eur Ceram Soc, 2017, 37(15): 4902-4911.

    [98] [98] SAFRONOVA N A, KRYZHANOVSKA O S, DOBROTVORSKA M V, et al. Influence of sintering temperature on structural and optical properties of Y2O3-MgO composite SPS ceramics[J]. Ceram Int, 2020, 46(5): 6537-6543.

    [99] [99] WANG J W, CHEN D Y, JORDAN E H, et al. Infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powder[J]. J Am Ceram Soc, 2010, 93(11): 3535-3538.

    [100] [100] CHEN C H, GAROFANO J K M, MUOTO C K, et al. A foaming esterification sol-gel route for the synthesis of magnesia-yttria nanocomposites[J]. J Am Ceram Soc, 2011, 94(2): 367-371.

    [101] [101] XU S Q, LI J, LI C Y, et al. Infrared-transparent Y2O3-MgO nanocomposites fabricated by the glucose sol-gel combustion and hot-pressing technique[J]. J Am Ceram Soc, 2015, 98(9): 2796-2802.

    [102] [102] GHORBANI S, RAZAVI R S, LOGHMAN-ESTARKI M R, et al. Synthesis of MgO-Y2O3 composite nanopowder with a high specific surface area by the Pechini method[J]. Ceram Int, 2017, 43(1): 345-354.

    [103] [103] HAJI SEYEDRAZI S S, TAHERI-NASSAJ E. Effects of Y2O3 additive percentage on MgO ceramic by Co-precipitation and SPS methods[J]. Mater Chem Phys, 2018, 219: 96-108.

    [104] [104] SHEN Z Y, ZHU Q Q, FENG T, et al. Fabrication of infrared-transparent Y2O3-MgO composites using nanopowders synthesized via thermal decomposition[J]. Ceram Int, 2021, 47(9): 13007-13014.

    [105] [105] YANG S Y, LAN H, SUN X M, et al. Fabrication of MgO-Y2O3 composite nanopowders by combining hydrothermal and seeding methods[J]. Materials, 2022, 16(1): 126.

    [107] [107] LIU Mengyin, ZHANG Gaofeng, WANG Yuezhong, et al. Rare Met Mater Eng, 2020, 49(2): 718-722.

    [108] [108] LIU L H, MORITA K, SUZUKI T S, et al. Synthesis of highly-infrared transparent Y2O3-MgO nanocomposites by colloidal technique and SPS[J]. Ceram Int, 2020, 46(9): 13669-13676.

    [109] [109] KUMAR K, OH H M, KIM M J, et al. Scalable and tunable Y2O3-MgO composite for infrared transparency applications[J]. J Am Ceram Soc, 2022, 105(5): 3636-3646.

    [110] [110] YONG S M, CHOI D H, LEE K, et al. Influence of the calcination temperature on the optical and mechanical properties of Y2O3-MgO nanocomposite[J]. Arch Metall Mater, 2023: 63(3): 1481-1484.

    [111] [111] LIU L H, MORITA K, SUZUKI T S, et al. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering[J]. J Eur Ceram Soc, 2020, 40(13): 4547-4555.

    [112] [112] XU S Q, LI J, LI C Y, et al. Hot pressing of infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powders[J]. J Am Ceram Soc, 2015, 98(3): 1019-1026.

    [113] [113] MA H J, JUNG W K, YONG S M, et al. Microstructural freezing of highly NIR transparent Y2O3-MgO nanocomposite via pressure-assisted two-step sintering[J]. J Eur Ceram Soc, 2019, 39(15): 4957-4964.

    [114] [114] MA H J, KONG J H, KIM D K. Insight into the scavenger effect of LiF on extinction of a carboxylate group for mid-infrared transparent Y2O3?MgO nanocomposite[J]. Scr Mater, 2020, 187: 37-42.

    [115] [115] SHEN Z Y, XIE J X, QIAN K C, et al. Preparation and study of the mechanical and optical properties of infrared transparent Y2O3-MgO composite ceramics[J]. J Am Ceram Soc, 2021, 104(12): 6335-6344.

    [116] [116] LIU L H, MORITA K, SUZUKI T S, et al. Effect of volume ratio on optical and mechanical properties of Y2O3-MgO composites fabricated by spark-plasma-sintering process[J]. J Eur Ceram Soc, 2021, 41(3): 2096-2105.

    [117] [117] SMITH K, BELL S S, NORDAHL C S, et al. AL ADDITIONS FOR GRAIN PINNING IN Y2O3-MgO[P]. US Patent, 20220259107. 2022-08-18.

    [118] [118] WANG J W, ZHANG L C, CHEN D Y, et al. Y2O3-MgO-ZrO2 infrared transparent ceramic nanocomposites[J]. J Am Ceram Soc, 2012, 95(3): 1033-1037.

    [119] [119] ZHANG L L, FAN J T, QIAN K C, et al. Enhanced near-infrared transmission of ZnO-doped Y2O3-MgO nanocomposites with reduced light scattering due to decreased refractive index difference[J]. J Eur Ceram Soc, 2022, 42(11): 4616-4622.

    [120] [120] FAN X L, FAN J T, QIAN K C, et al. Preparation of MgF2-CaF2 nanocomposite ceramics with high infrared transmittance[J]. J Eur Ceram Soc, 2022, 42(15): 7203-7208.

    [121] [121] WU N, LI X D, LI J G, et al. Fabrication of Gd2O3-MgO nanocomposite optical ceramics with varied crystallographic modifications of Gd2O3 constituent[J]. J Am Ceram Soc, 2018, 101(11): 4887-4891.

    [123] [123] XIE Junxi. Preparation and research of infrared optical properties of Y2O3-MgO nanocomposite ceramics[D]. Beijing: Chinese Academy of Science, 2017.

    Tools

    Get Citation

    Copy Citation Text

    LI Kai, FAN Jintai, JIANG Benxue, QIAN Kaichen, TIAN Yanna, YIN Xiaomeng. Infrared Transparent Ceramics for Windows[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 993

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Jintai FAN (jtfan@siom.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics