Optics and Precision Engineering, Volume. 19, Issue 12, 3025(2011)

Semi-supervised manifold learning and its application to remote sensing image classification

HUANG Hong*... QIN Gao-feng and FENG Hai-liang |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(19)

    [1] [1] ZHAO Y S. The Principle and Method of Analysis of Remote Sensing Application [M]. Beijing: Science Press, 2003. (in Chinese)

    [2] [2] WAN M H, LAI Z H, JIN Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J].Applied Mathematics and Computation, 2011, 217(23):9659-9668.

    [4] [4] FORERO S V, ANGULO J, CHANUSSOT J. Morphological image distances for hyperspectral dimensionality exploration using Kernel-PCA and ISOMAP [J]. Proceedings of 2009 IEEE International Geosci.Rem.Sens. Symposium, 2009, 3(12):109-112.

    [7] [7] BACHMANN C M, AINSWORTH T L, FUSINA R A. Bathymetric retrieval from hyperspectral imagery using manifold coordinate representations [J]. IEEE Trans.Geosci.Rem.Sens, 2009, 47(3):884-897.

    [8] [8] BACHMANN C M, AINSWORTH T L, FUSINA R A, et al.. Manifold coordinates representations of hyperspectral imagery: Improvements in algorithm performance and computational efficiency [J].IEEE Trans.Geosci.Rem.Sens, 2010, 7(12):4244-4247.

    [9] [9] YE Q. A method of segmentation for hyperspectral image base on manifold learning pixel distribution flow[D]. Xi’an:Xi’an University, 2010. (in Chinese)

    [10] [10] CAPOBIANCO L, GARZELLI A, CAMPS V G. Target detection with semi-supervised kernel orthogonal subspace projection [J]. IEEE Trans.Geosci.Rem.Sens, 2009, 47(11):3822-3833.

    [11] [11] BANDOS T V, BRUZZONE L, CAMPS V G. Classification of hyperspectral images with regularized linear discriminant analysis [J].IEEE Trans.Geosci.Rem.Sens, 2009, 47(3):862-873.

    [12] [12] REN G B, ZHANG J, MA Y, et al.. Generative model based semi-supervised learning method of remote sensing image classification [J].Journal of Remote Sensing, 2010, 14(6):1090-1104.

    [13] [13] YANG W, FANG T, XU G. Semi-supervised learning remote sensing image classification based on naive Bayesian [J].Computer Engineering, 2010, 36(20):167-169.

    [14] [14] CAI D, HE X F, HAN J W. Semi-supervised discriminant analysis[C]. IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007:1-7.

    [15] [15] SONG Y Q, NIE F P, ZHANG C S, et al.. A unified framework for semi-supervised dimensionality reduction [J].Pattern Recognition, 2008, 41(9):2789-2799.

    [16] [16] SONG Y Q, NIE F P, ZHANG C S. Semi-supervised sub-manifold discriminant analysis [J].Pattern Recognition, 2008, 29(13):1806-1813.

    [18] [18] YANG Y, LI X, PAN Y, et al.. Binary sparse nonnegative matrix factorization[J]. IEEE Trans on Circuits and Systems for Video Technology, 2009, 19(5):772-777.

    [19] [19] NIE F P, XU D, TSANG I W, et al.. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction [J].IEEE Trans on Image Processing, 2010, 19(7):1057-7149.

    CLP Journals

    [1] HUANG Hong, YANG Mei, ZHANG Man-ju. Hyperspectral remote sensing image classification based on SDE[J]. Optics and Precision Engineering, 2013, 21(11): 2922

    [2] HUANG Hong, QU Huan-peng. Hyperspectral remote sensing image classification based on SSDE[J]. Optics and Precision Engineering, 2014, 22(2): 434

    Tools

    Get Citation

    Copy Citation Text

    HUANG Hong, QIN Gao-feng, FENG Hai-liang. Semi-supervised manifold learning and its application to remote sensing image classification[J]. Optics and Precision Engineering, 2011, 19(12): 3025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2011

    Accepted: --

    Published Online: Dec. 22, 2011

    The Author Email: Hong HUANG (hhuang.cqu@gmail.com)

    DOI:10.3788/ope.20111912.3025

    Topics