Semiconductor Optoelectronics, Volume. 43, Issue 3, 405(2022)

Research Progress of GaNbased Highspeed Blue and Green Light Source

LI Zhenhao... WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian and LI Hongtao |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(187)

    [1] [1] Tsonev D, Videv S, Haas H. Light fidelity (LiFi): Towards alloptical networking[J]. Proc. SPIE, 2014, 9007: 900702.

    [2] [2] Tsiatmas A, Baggen C, Willems F, et al. An illumination perspective on visible light communications[J]. IEEE Communications Magazine, 2014, 52(7): 6471.

    [3] [3] Tsai C T, Cheng C H, Kuo H C, et al. Toward highspeed visible laser lighting based optical wireless communications[J]. Progress in Quantum Electronics, 2019, 67: 100225.1100225.19.

    [4] [4] Ergul O, Dinc E, Akan O B. Communicate to illuminate: Stateoftheart and research challenges for visible light communications[J]. Physical Communication, 2015, 17: 7285.

    [5] [5] Jovicic A, Li J, Richardson T. Visible light communication: opportunities, challenges and the path to market[J]. IEEE Communications Magazine, 2013, 51(12): 2632.

    [6] [6] Chen H, Wu C, Li H, et al. Advances and prospects in visible light communications[J]. J. of Semiconductors, 2016, 37(1): 110.

    [7] [7] Li X, Bamiedakis N, Wei J, et al. μLEDbased singlewavelength bidirectional POF link with 10Gb/s aggregate data rate[J]. J. of Lightwave Technol., 2015, 33(17): 35713576.

    [8] [8] AlShammaa A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHz frequencies through seawater[J]. IEEE Trans. on Antennas and Propagation, 2004, 52(11): 28432849.

    [9] [9] Uribe C, Grote W. Radio communication model for underwater WSN[C]// Proc. of the 2009 3rd Inter. Conf. on New Technologies, Mobility and Security, 2009.

    [10] [10] Lacovara P. Highbandwidth underwater communications[J]. Marine Technol. Society J., 2008, 42(1): 93102.

    [11] [11] Sozer E M, Stojanovic M, Proakis J G. Underwater acoustic networks[J]. IEEE J. of Oceanic Engineering, 2000, 25(1): 7283.

    [12] [12] Solonenko M G, Mobley C D. Inherent optical properties of Jerlov water types[J]. Appl. Opt., 2015, 54(17): 53925401.

    [13] [13] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Commun. Surveys & Tutorials, 2017, 19(1): 204238.

    [14] [14] Grubor J, Lee S C J, Langer K, et al. Wireless highspeed data transmission with phosphorescent whitelight LEDs[C]// Proc. of the 33rd European Conf. and Exhibition of Optical Communication, 2007.

    [15] [15] Ikeda K, Horiuchi S, Tanaka T, et al. Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LEDs for optical communications[J]. IEEE Trans. on Electron Devices, 1977, 24(7): 10011005.

    [16] [16] Cai Y, Haggar J I H, Zhu C, et al. Direct epitaxial approach to achieve a monolithic onchip integration of a HEMT and a single microLED with a highmodulation bandwidth[J]. ACS Appl. Electron. Mater., 2021, 3(1): 445450.

    [17] [17] Haemmer M, Roycroft B, Akhter M, et al. Sizedependent bandwidth of semipolar ($11/overline{2}2$) lightemittingdiodes[J]. IEEE Photon. Technol. Lett., 2018, 30(5): 439442.

    [18] [18] Zhu S, Lin S, Li J, et al. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaNbased LEDs[J]. Appl. Phys. Lett., 2017, 111(17): 171105.

    [19] [19] Mckendry J J D, Massoubre D, Zhang S, et al. Visiblelight communications using a CMOScontrolled microlightemittingdiode array[J]. J. of Lightwave Technol., 2012, 30(1): 6167.

    [20] [20] Zhu S C, Zhao L X, Yang C, et al. GaNbased flipchip parallel micro LED array for visible light communication[C]// Inter. Conf. on Optoelectronics and Microelectronics Technol. and Application, 2017.

    [21] [21] Tian P, Mckendry J J D, Gong Z, et al. Sizedependent efficiency and efficiency droop of blue InGaN microlight emitting diodes[J]. Appl. Phys. Lett., 2012, 101(23): 2217.

    [22] [22] Yang W, Zhang S, Mckendry J J D, et al. Sizedependent capacitance study on InGaNbased microlightemitting diodes[J]. J. of Appl. Phys., 2014, 116(4): 044512.

    [23] [23] Huang SC, Li H, Zhang ZH, et al. Superior characteristics of microscale light emitting diodes through tightly lateral oxideconfined scheme[J]. Appl. Phys. Lett., 2017, 110(2): 021108.

    [24] [24] Konoplev S S, Bulashevich K A, Karpov S Y. From largesize to microLEDs: Scaling trends revealed by modeling[J]. Physica Status Solidi (A), 2018, 215(10): 1700508.11700508.6.

    [25] [25] Gong Z, Jin S, Chen Y, et al. Sizedependent light output, spectral shift, and selfheating of 400nm InGaN lightemitting diodes[J]. J. of Appl. Phys., 2010, 107(1): 1086.

    [26] [26] Tian P, Mckendry J J D, Herrnsdorf J, et al. Temperaturedependent efficiency droop of blue InGaN microlight emitting diodes[J]. Appl. Phys. Lett., 2012, 101(23): 2217.

    [27] [27] Zheng Z W, Yu H, Ren B C, et al. Modulation characteristics of GaNbased lightemittingdiodes for visible light communication[J]. ECS J. of Solid State Science and Technol., 2017, 6(9): R135R8.

    [28] [28] Tian P, Althumali A, Gu E, et al. Aging characteristics of blue InGaN microlight emitting diodes at an extremely high current density of 3.5kA·cm-2[J]. Semiconductor Science and Technol., 2016, 31(4): 045005.

    [29] [29] Piprek J. Efficiency droop in nitridebased lightemitting diodes[J]. Physica Status Solidi (A), 2010, 207(10): 22172225.

    [30] [30] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies[J]. J. of Appl. Phys., 2013, 114(7): 10.1063.

    [31] [31] Lu H, Yan C, Gao W, et al. Efficiency droop effects of GaNbased lightemitting diodes on the performance of code division multiple access visiblelight communication system[J]. Optical Engineering, 2016, 55(2): 027109.

    [32] [32] Mckendry J J D, Green R P, Kelly A E, et al. Highspeed visible light communications using individual pixels in a micro lightemitting diode array[J]. IEEE Photon. Technol. Lett., 2010, 22(18): 13461348.

    [33] [33] Kelly A E, Mckendry J J D, Zhang S, et al. Highspeed GaN microLED arrays for data communications[C]// 14th Inter. Conf. on Trans. Opt. Netw., 2012.

    [34] [34] Watson S, Mckendry J J D, Zhang S L, et al. High speed GaN microlightemitting diode arrays for data communications[J]. Proc. SPIE, 2012, 8540: 85400G.

    [35] [35] Ferreira R X G, Xie E, Mckendry J J D, et al. High bandwidth GaNbased microLEDs for multiGb/s visible light communications[J]. IEEE Photon. Technol. Lett., 2016, 28(19): 20232026.

    [36] [36] Xie E, Stonehouse M, Ferreira R, et al. Design, fabrication, and application of GaNbased microLED arrays with individual addressing by Nelectrodes[J]. IEEE Photonics J., 2017, 9(6): 111.

    [37] [37] Tian P, Liu X, Yi S, et al. Highspeed underwater optical wireless communication using a blue GaNbased microLED[J]. Opt. Express, 2017, 25(2): 11931201.

    [38] [38] Liu X, Tian P, Wei Z, et al. Gbps longdistance realtime visible light communications using a highbandwidth GaNbased microLED[J]. IEEE Photonics J., 2017, 9(6): 19.

    [39] [39] ChienLan L, ChongLung H, YungFu C, et al. Highspeed lightemitting diodes emitting at 500nm with 463MHz modulation bandwidth[J]. IEEE Electron Device Lett., 2014, 35(5): 563565.

    [40] [40] Chen C J, Yan J H, Chen D H, et al. A 520nm green GaN LED with high bandwidth and low current density for gigabits OFDM data communication[C]// 2018 Optical Fiber Communications Conf. and Exposition (OFC), 2018.

    [41] [41] Cao H, Lin S, Ma Z, et al. Color converted white lightemitting diodes with 637.6MHz modulation bandwidth[J]. IEEE Electron Device Lett., 2019, 40(2): 267270.

    [42] [42] Tian P, Mckendry J J D, Gong Z, et al. Characteristics and applications of micropixelated GaNbased light emitting diodes on Si substrates[J]. J. of Appl. Phys., 2014, 115(3): 013103.

    [43] [43] Tsai S C, Lu C H, Liu C P. Piezoelectric effect on compensation of the quantumconfined Stark effect in InGaN/GaN multiple quantum wells based green lightemitting diodes[J]. Nano Energy, 2016, 28: 373379.

    [44] [44] Yu L M, Wang L, Hao Z B, et al. Highspeed microLEDs for visible light communication: challenges and progresses[J]. Semiconductor Science and Technol., 2022, 37(2): 023001.

    [45] [45] Romanov A E, Baker T J, Nakamura S, et al. Straininduced polarization in wurtzite Ⅲnitride semipolar layers[J]. J. of Appl. Phys., 2006, 100(2): 28.

    [46] [46] Chiu C H, Lin D W, Lin C C, et al. Reduction of efficiency droop in semipolar (1/bar101) InGaN/GaN light emitting diodes grown on patterned silicon substrates[J]. Appl. Phys. Express, 2011, 4(1): 039201.

    [47] [47] Pan C C, Tanaka S, Wu F, et al. Highpower, lowefficiencydroop semipolar ($20/bar{2}/bar{1}$) singlequantumwell blue lightemitting diodes[J]. Appl. Phys. Express, 2012, 5(6): 062103.

    [48] [48] Monavarian M, Rashidi A, Aragon A, et al. Explanation of low efficiency droop in semipolar (202 1) InGaN/GaN LEDs through evaluation of carrier recombination coefficients[J]. Opt. Express, 2017, 25(16): 1934319353.

    [49] [49] Monavarian M, Rashidi A, Aragon A A, et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN lightemitting diodes[J]. Appl. Phys. Lett., 2018, 112(4): 041104.

    [50] [50] Rashidi A, Monavarian M, Aragon A, et al. Nonpolar ${m}$plane InGaN/GaN microscale lightemitting diode with 1.5GHz modulation bandwidth[J]. IEEE Electron Device Lett., 2018, 39(4): 520523.

    [51] [51] Chen SW H, Huang YM, Chang YH, et al. Highbandwidth green semipolar (2021) InGaN/GaN micro lightemitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 22282235.

    [52] [52] Dinh D V, Quan Z, Roycroft B, et al. GHz bandwidth semipolar (112 2) InGaN/GaN lightemitting diodes[J]. Opt. Lett., 2016, 41(24): 57525755.

    [53] [53] Jeon H, Tu L W, Krames M R, et al. Development of semipolar (1122) LEDs on GaN templates[C]// LightEmitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xx, SPIE Opto. Inter. Society for Optics and Photonics, 2016.

    [54] [54] Quan Z, Dinh D V, Presa S, et al. High bandwidth freestanding semipolar (1122) InGaN/GaN lightemitting diodes[J]. IEEE Photonics J., 2016, 8(5): 18.

    [55] [55] Dinh D V, Akhter M, Presa S, et al. Semipolar (1122) InGaN lightemitting diodes grown on chemicallymechanically polished GaN templates[J]. Physica Status Solidi (A), 2015, 212(10): 21962200.

    [56] [56] Khoury M, Li H, Li P, et al. Polarized monolithic white semipolar (2021) InGaN lightemitting diodes grown on high quality (2021) GaN/sapphire templates and its application to visible light communication[J]. Nano Energy, 2020, 67: 104236.

    [57] [57] Windisch R, Knobloch A, Kuijk M, et al. Largesignalmodulation of highefficiency lightemitting diodes for optical communication[J]. IEEE J. of Quantum Electron., 2000, 36(12): 14451453.

    [58] [58] Wun J M, Lin C W, Chen W, et al. GaNbased miniaturized Cyan lightemitting diodes on a patterned sapphire substrate with improved fiber coupling for very highspeed plastic optical fiber communication[J]. IEEE Photonics J., 2012, 4(5): 15201529.

    [59] [59] Shi J W, Chi K L, Wun J M, et al. Ⅲnitride based Cyan lightemitting diodes with GHz bandwidth for highspeed visible light communication[J]. IEEE Electron Device Lett., 2016, 37(7): 894897.

    [60] [60] Vinogradov J, Kruglov R, Engelbrecht R, et al. GaNbased Cyan lightemitting diode with up to 1GHz bandwidth for highspeed transmission over SIPOF[J]. IEEE Photonics J., 2017, 9(3): 17.

    [61] [61] Rajabi K, Wang J, Jin J, et al. Improving modulation bandwidth of cplane GaNbased lightemitting diodes by an ultrathin quantum wells design[J]. Opt. Express, 2018, 26(19): 2498524991.

    [62] [62] Xu F, Jin Z, Tao T, et al. Cplane blue microLED with 1.53GHz bandwidth for highspeed visible light communication[J]. IEEE Electron Device Lett., 2022, 43(6): 910913.

    [63] [63] Yuan Z, Li Y, Lu X, et al. Investigation of modulation bandwidth of InGaN green microLEDs by varying quantum barrier thickness[J]. IEEE Trans. on Electron Devices, 2022: 18.

    [64] [64] Lan H Y, Tseng I C, Kao H Y, et al. 752MHz modulation bandwidth of highspeed blue micro lightemitting diodes[J]. IEEE J. of Quantum Electron., 2018, 54(5): 16.

    [65] [65] Okur S, Nami M, Rishinaramangalam A K, et al. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN lightemitting diodes[J]. Opt. Express, 2017, 25(3): 21782186.

    [66] [66] Monavarian M, Rashidi A, Aragon A A, et al. Tradeoff between bandwidth and efficiency in semipolar (2021) InGaN/GaN single and multiplequantumwell lightemitting diodes[J]. Appl. Phys. Lett., 2018, 112(19): 191102.1191102.5.

    [67] [67] Shi J W, Sheu J K, Chen C H, et al. Highspeed GaNbased green lightemitting diodes with partially ndoped active layers and currentconfined apertures[J]. IEEE Electron Device Lett., 2008, 29(2): 158160.

    [68] [68] Wang L, Yang D, Hao Z B, et al. Metalorganicvapor phase epitaxy of InGaN quantum dots and their applications in lightemitting diodes[J]. Chinese Physics B, 2015, 24(6): 2530.

    [69] [69] Yang D, Wang L, Hao Z B, et al. Dislocation analysis of InGaN/GaN quantum dots grown by metal organic chemical vapor deposition[J]. Superlattices and Microstructures, 2016, 99: 221225.

    [70] [70] Schulz S, OReilly E P. Theory of reduced builtin polarization field in nitridebased quantum dots[J]. Phys. Rev. B, 2010, 82(3): 30863092.

    [71] [71] Zhang M, Bhattacharya P, Guo W. InGaN/GaN selforganized quantum dot green light emitting diodes with reduced efficiency droop[J]. Appl. Phys. Lett., 2010, 97(1): 141101.

    [72] [72] Lv W, Wang L, Wang L, et al. InGaN quantum dot green lightemitting diodes with negligible blue shift of electroluminescence peak wavelength[J]. Appl. Phys. Express, 2014, 7(2): 343352.

    [73] [73] Lv W, Wang L, Wang J, et al. Green and red lightemitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method[J]. Jap. J. of Appl. Phys., 2013, 52(8S): 279287.

    [74] [74] Weng G, Mei Y, Liu J, et al. Low threshold continuouswave lasing of yellowgreen InGaNQD verticalcavity surfaceemitting lasers[J]. Opt. Express, 2016, 24(14): 1554615553.

    [76] [76] Wang L, Wei Z X, Chen C J, et al. 1.3GHz EO bandwidth GaNbased microLED for multigigabit visible light communication[J]. Photonics Research, 2021, 9(5): 792802.

    [77] [77] Wei Z, Zhang L, Wang L, et al. 2Gbps/3m airunderwater optical wireless communication based on a singlelayer quantum dot blue microLED[J]. Opt. Lett., 2020, 45(9): 26162619.

    [78] [78] TsatsulNikov A F, Kovsh A R, Zhukov A E, et al. VolmerWeber and StranskiKrastanov InAs(Al,Ga)As quantum dots emitting at 1.3μm[J]. J. of Appl. Phys., 2000, 88(11): 62726275.

    [79] [79] Wang L, Wang L, Chen C J, et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of microLEDs[J]. Laser & Photonics Reviews, 2021, 15(5): 202000406.

    [80] [80] Nami M, Rashidi A, Monaavarian M, et al. Electrically injected GHzclass GaN/InGaN coreshell nanowirebased μLEDs: Carrier dynamics and nanoscale homogeneity[J]. ACS Photonics, 2019, 6(7): 16181625.

    [81] [81] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 355.

    [82] [82] Shannon C E. A mathematical theory of communication[J]. Bell System Technical J., 1948, 27(3): 379423.

    [83] [83] Xie E, Bian R, He X, et al. Over 10Gbps VLC for longdistance applications using a GaNbased seriesbiased microLED array[J]. IEEE Photonics Technol. Lett., 2020, 32(9): 499502.

    [84] [84] Tsonev D, Chun H, Rajbhandari S, et al. A 3Gb/s singleLED OFDMbased wireless VLC link using a gallium nitride μLED[J]. IEEE Photon. Technol. Lett., 2014, 26(7): 637640.

    [85] [85] Xie E, He X, Islim M S, et al. Highspeed visible light communication based on a Ⅲnitride seriesbiased microLED array[J]. J. of Lightwave Technol., 2019, 37(4): 11801186.

    [86] [86] Lan H Y, Tseng I C, Lin Y H, et al. Highspeed integrated microLED array for visible light communication[J]. Opt. Lett., 2020, 45(8): 22032206.

    [87] [87] Arvanitakis G N, Bian R, Mckendry J J D, et al. Gb/s underwater wireless optical communications using seriesconnected GaN microLED arrays[J]. IEEE Photonics J., 2020, 12(2): 110.

    [88] [88] Huang Y, Guo Z, Wang X, et al. GaNbased highresponse frequency and highoptical power matrix microLED for visible light communication[J]. IEEE Electron Device Lett., 2020, 41(10): 15361639.

    [89] [89] Chang Y H, Huang Y M, Gunawan W H, et al. 4.343Gbit/s green semipolar (2021) μLED for high speed visible light communication[J]. IEEE Photonics J., 2021, 13(4): 14.

    [90] [90] Lin G R, Kuo H C, Cheng C H, et al. Ultrafast 2×2 green microLED array for optical wireless communication beyond 5Gbit/s[J]. Photonics Research, 2021, 9(10): 10.1364.

    [91] [91] Zhang S, Watson S, Mckendry J J D, et al. 1.5Gbit/s multichannel visible light communications using CMOScontrolled GaNbased LEDs[J]. J. of Lightwave Technol., 2013, 31(8): 12111216.

    [92] [92] Carreira J F C, Xie E, Bian R, et al. Onchip GaNbased dualcolor microLED arrays and their application in visible light communication[J]. Opt. Express, 2019, 27(20): A1517A1528.

    [93] [93] Pezeshki B, Tselikov A, Kalman R, et al. Wide and parallel LEDbased optical links using multicore fiber for chiptochip communications[C]// Proc. of the Optical Fiber Communication Conf. (OFC), 2021.

    [94] [94] Huang Y, Guo Z, Huang H, et al. Influence of current density and capacitance on the bandwidth of VLC LED[J]. IEEE Photonics Technol. Lett., 2018, 30(9): 773776.

    [95] [95] Huang H, Wu H, Huang C, et al. Cascade GaNbased blue microlightemitting diodes for dual function of illumination and visible light communication[J]. J. of Physics D: Appl. Phys., 2020, 53(35): 355103.

    [96] [96] Rajbhandari S, Mckendry J J D, Herrnsdorf J, et al. A multigigabit per second integrated multipleinput multipleoutput VLC demonstrator[J]. J. of Lightwave Technol., 2017, 35(20): 43584365.

    [97] [97] Carreira J F C, Guilhabert B J E, Mckendry J J D, et al. Integration of microLED array on CMOS by transfer printing[C]// IEEE Photon Conf., 2018.

    [98] [98] Pezeshki B, Kalman R, Tselikov A, et al. High Speed Light MicroLEDs for Visible Wavelength Communication[C]// Proc. of Conf. on LightEmitting Devices, Materials, and Applications XXV, 2021: 10.1117.

    [99] [99] Pezeshki B, Khoeini F, Tselikov A, et al. MicroLED arraybased optical links using imaging fiber for chiptochip communications[C]// Proc. of the Optical Fiber Communication Conf. (OFC), 2022.

    [100] [100] Kottke C, Habel K, Grobe L, et al. Singlechannel wireless transmission at 806Mbit/s using a whitelight LED and a PINbased receiver[C]// 14th Inter. Conf. on Transparent Optical Networks, 2012.

    [101] [101] Carreira J F C, Griffiths A D, Xie E, et al. Direct integration of microLEDs and a SPAD detector on a silicon CMOS chip for data communications and timeofflight ranging[J]. Opt. Express, 2020, 28(5): 69096917.

    [102] [102] Hassan N B, Ali M, Griffiths A D, et al. Integration of an LED/SPAD optical wireless transceiver with CubeSat onboard systems[C]// 2020 IEEE Photonics Conf. (IPC), 2020.

    [103] [103] Griffiths A D, Herrnsdorf J, Henderson R K, et al. Highsensitivity intersatellite optical communications using chipscale LED and singlephoton detector hardware[J]. Opt. Express, 2021, 29(7): 1074910768.

    [104] [104] Lin R, Liu X, Zhou G, et al. InGaN microLED array enabled advanced underwater wireless optical communication and underwater charging[J]. Adv. Optical Materials, 2021, 9(12): 2002211.

    [105] [105] Zhou G, Lin R, Qian Z, et al. GaNbased microLEDs and detectors defined by current spreading layer: sizedependent characteristics and their multifunctional applications[J]. J. of Physics D: Appl. Phys., 2021, 54(33): 335104.

    [106] [106] Tian P, Mckendry J J, Gu E, et al. Fabrication, characterization and applications of flexible vertical InGaN microlight emitting diode arrays[J]. Opt. Express, 2016, 24(1): 699707.

    [107] [107] Li X, Wu L, Liu Z, et al. Design and characterization of active matrix LED microdisplays with embedded visible light communication transmitter[J]. J. of Lightwave Technol., 2016, 34(14): 34493457.

    [108] [108] Jalajakumari A V N, Xie E, Mckendry J, et al. Highspeed integrated digital to light converter for short range visible light communication[J]. IEEE Photonics Technol. Lett., 2017, 29(1): 118121.

    [109] [109] Griffiths A D, Islim M S, Herrnsdorf J, et al. CMOSintegrated GaN LED array for discrete power level stepping in visible light communications[J]. Opt. Express, 2017, 25(8): A338A345.

    [110] [110] Huang H, Wu H, Huang C, et al. Thermal effects on the electrical and optical characteristics of microlightemitting diodes with different current spreading layer[J]. Physica Status Solidi (A), 2019, 216(14): 10.1002.

    [111] [111] Huang H, Huang C, Wu H, et al. Compromise between illumination performance and modulation bandwidth for microsize white lightemitting diode by selecting injected current[J]. Appl. Phys. A, 2019, 125(8): 522.1522.8.

    [112] [112] James Singh K, Huang YM, Ahmed T, et al. MicroLED as a promising candidate for highspeed visible light communication[J]. Appl. Sciences, 2020, 10(20): 7384.

    [113] [113] Tian P, Wu Z, Liu X, et al. Largesignal modulation characteristics of a GaNbased microLED for Gbps visiblelight communication[J]. Appl. Phys. Express, 2018, 11(4): 044101.

    [114] [114] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys. Rev., 1946, 69(12): 3738.

    [115] [115] Gye Mo Y, Macdougal M H, Pudikov V, et al. Influence of mirror reflectivity on laser performance of verylowthreshold verticalcavity surfaceemitting lasers[J]. IEEE Photon. Technol. Lett., 1995, 7(11): 12281230.

    [116] [116] Wu J Z, Long H, Shi X L, et al. Reduction of lasing threshold of GaNbased verticalcavity surfaceemitting lasers by using short cavity lengths[J]. IEEE Trans. on Electron Devices, 2018, 65(6): 25042508.

    [117] [117] Zhang C, Elafandy R, Han J. Distributed Bragg reflectors for GaNbased verticalcavity surfaceemitting lasers[J]. Appl. Sciences, 2019, 9(8): 1593.

    [118] [118] Mei Y, Xu R B, Xu H, et al. A comparative study of thermal characteristics of GaNbased VCSELs with three different typical structures[J]. Semiconductor Science and Technol., 2017, 33(1): 015016.

    [119] [119] Yu H C, Zheng Z W, Mei Y, et al. Progress and prospects of GaNbased VCSEL from near UV to green emission[J]. Progress in Quantum Electron., 2018, 57: 119.

    [120] [120] Lu T C, Kao C C, Kuo H C, et al. CW lasing of current injection blue GaNbased vertical cavity surface emitting laser[J]. Appl. Phys. Lett., 2008, 92(14): 141102.

    [121] [121] Lu T C, Kao C C, Kuo H C, et al. CW lasing of current injection blue GaNbased vertical cavity surface emitting lasers[C]// 2008 Conf. on Lasers and ElectroOptics, 2008: 12.

    [122] [122] Kuramoto M, Kobayashi S, Akagi T, et al. Enhancement of slope efficiency and output power in GaNbased verticalcavity surfaceemitting lasers with a SiO2buried lateral index guide[J]. Appl. Phys. Lett., 2018, 112(11): 111104.

    [123] [123] Muranaga W, Akagi T, Fuwa R, et al. GaNbased verticalcavity surfaceemitting lasers using ntype conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SCCC01.

    [124] [124] Takeuchi T, Kamiyama S, Iwaya M, et al. GaNbased verticalcavity surfaceemitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Rep. Prog. Phys., 2019, 82(1): 012502.

    [125] [125] Lu T C, Chen S W, Wu T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Appl. Phys. Lett., 2010, 97(7): 868.

    [126] [126] Hsieh D H, Tzou A J, Kao T S, et al. Improved carrier injection in GaNbased VCSEL via AlGaN/GaN multiple quantum barrier electron blocking layer[J]. Opt. Express, 2015, 23(21): 2714527151.

    [127] [127] Higuchi Y, Omae K, Matsumura H, et al. Roomtemperature CW lasing of a GaNbased verticalcavity surfaceemitting laser by current injection[J]. Appl. Phys. Express, 2008, 1(12): 121002.

    [128] [128] Chen L R, Chen B Y, Kuo S Y, et al. Antiguiding and guiding effects in GaNbased verticalcavity surfaceemitting lasers[J]. AIP Advances, 2020, 10(2): 025204.

    [129] [129] Onishi T, Imafuji O, Nagamatsu K, et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE J. of Quantum Electron., 2012, 48(9): 11071112.

    [130] [130] Izumi S, Fuutagawa N, Hamaguchi T, et al. Roomtemperature continuouswave operation of GaNbased verticalcavity surfaceemitting lasers fabricated using epitaxial lateral overgrowth[J]. Appl. Phys. Express, 2015, 8(6): 11071112.

    [131] [131] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwattclass GaNbased blue verticalcavity surfaceemitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (A), 2016, 213(5): 11701176.

    [132] [132] Hamaguchi T, Nakajima H, Ito M, et al. Lateral carrier confinement of GaNbased verticalcavity surfaceemitting diodes using boron ion implantation[J]. Jap. J. of Appl. Phys., 2016, 55(12): 122101.

    [133] [133] Hamaguchi T, Tanaka M, Mitomo J, et al. Lateral optical confinement of GaNbased VCSEL using an atomically smooth monolithic curved mirror[J]. Sci. Rep., 2018, 8(1): 10350.

    [134] [134] Nakajima H, Hamaguchi T, Tanaka M, et al. Single transverse mode operation of GaNbased verticalcavity surfaceemitting laser with monolithically incorporated curved mirror[J]. Appl. Phys. Express, 2019, 12(8): 084003.

    [135] [135] Nakajima H, Hamaguchi T, Tanaka M, et al. Recent progress in GaNbased verticalcavity surfaceemitting lasers with lateral optical confinement due to an incorporated curved mirror[C]// IEEE Conf. on Lasers and ElectroOptics, 2018.

    [136] [136] Hamaguchi T, Nakajima H, Fuutagawa N. GaNbased verticalcavity surfaceemitting lasers incorporating dielectric distributed Bragg reflectors[J]. Appl. Sciences, 2019, 9(4): 733.

    [137] [137] Hamaguchi T, Tanaka M, Nakajima H. A review on the latest progress of visible GaNbased VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SC0806.

    [138] [138] Leonard J T, Young E C, Yonkee B P, et al. Demonstration of a Ⅲnitride verticalcavity surfaceemitting laser with a Ⅲnitride tunnel junction intracavity contact[J]. Appl. Phys. Lett., 2015, 107(9): 75290.

    [139] [139] Lee S, Forman C A, Kearns J, et al. Demonstration of GaNbased verticalcavity surfaceemitting lasers with buried tunnel junction contacts[J]. Opt. Express, 2019, 27(22): 3162131628.

    [140] [140] Liu W J, Chen S Q, Hu X L, et al. Low threshold lasing of GaNbased VCSELs with subnanometer roughness polishing[J]. IEEE Photon. Technol. Lett., 2013, 25(20): 20142017.

    [141] [141] Liu W J, Hu X L, Ying L Y, et al. Room temperature continuous wave lasing of electrically injected GaNbased vertical cavity surface emitting lasers[J]. Appl. Phys. Lett., 2014, 104(25): 25116.

    [142] [142] Cai Lie, Zhang Baoping, Zhang Jiangyong, et al. Fabrication and characteristics of GaNbased blue VCSEL[J]. Chinese J. of Luminescence, 2016, 37(4): 452456.

    [143] [143] Mei Y, Xu R B, Weng G E, et al. Tunable InGaN quantum dot microcavity light emitters with 129nm tuning range from yellowgreen to violet[J]. Appl. Phys. Lett., 2017, 111(12): 121107.

    [144] [144] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Sci. Appl., 2017, 6(1): e16199.

    [145] [145] Xu R B, Mei Y, Zhang B P, et al. Simultaneous blue and green lasing of GaNbased verticalcavity surfaceemitting lasers[J]. Semiconductor Science and Technol., 2017, 32(10): 105012.

    [146] [146] Mei Y, Xu R B, Ying L Y, et al. Room temperature continuous wave lasing of GaNbased green verticalcavity surfaceemitting lasers[J]. Gallium Nitride Materials and Devices Xiv, 2019, 10918.

    [147] [147] Xu R, Mei Y, Xu H, et al. Effects of lateral optical confinement InGaN VCSELs with double dielectric DBRs[J]. IEEE Photonics J., 2020, 12(2): 18.

    [148] [148] Xu H, Mei Y, Xu R B, et al. Green VCSELs based on nitride semiconductors[J]. Jap. J. of Appl. Phys., 2020, 59(SO): SO0803.

    [149] [149] Huang S Y, Hang R H, Shi J W, et al. Highperformance InGaNbased green resonantcavity lightemitting diodes for plastic optical fiber applications[J]. J. of Lightwave Technol., 2009, 27(18): 40844094.

    [150] [150] Tsai C L, Xu Z F. Lineofsight visible light communications with InGaNbased resonant cavity LEDs[J]. IEEE Photon. Technol. Lett., 2013, 25(18): 17931796.

    [151] [151] Tsai C L, Yen C T, Huang W J, et al. InGaNbased resonantcavity lightemitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications[J]. J. of Display Technol., 2013, 9(5): 365370.

    [152] [152] Cai W, Yuan J, Ni S, et al. GaNonSi resonantcavity lightemitting diode incorporating top and bottom dielectric distributed Bragg reflectors[J]. Appl. Phys. Express, 2019, 12(3): 032004.

    [153] [153] Kuramoto M, Kobayashi S, Akagi T, et al. Nanoheight cylindrical waveguide in GaNbased verticalcavity surfaceemitting lasers[J]. Appl. Phys. Express, 2020, 13(8): 082005.

    [154] [154] Denault K A, Cantore M, Nakamura S, et al. Efficient and stable laserdriven white lighting[J]. AIP Advances, 2013, 3(7): 072107.

    [155] [155] Shen C, Ng T K, Leonard J T, et al. Highbrightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droopfree solidstate lighting and visiblelight communications[J]. Opt. Lett., 2016, 41(11): 26082611.

    [156] [156] Shen C, Ng T K, Lee C, et al. Semipolar InGaNbased superluminescent diodes for solidstate lighting and visible light communications[C]// Gallium Nitride Materials and Devices Xii, 2017: 10104.

    [157] [157] Alatawi A A, HolguinLerma J A, Kang C H, et al. Blue superluminescent diode on cplane GaN beyond gigahertz modulation bandwidth for visible light communication[C]// 2019 Conf. on Lasers and ElectroOptics Europe & European Quantum Electronics Conf. (Cleo/EuropeEqec), 2019.

    [158] [158] Alatawi A A, HolguinLerma J A, Kang C H, et al. Blue superluminescent diodes with GHz bandwidth exciting perovskite nanocrystals for high CRI white lighting and highspeed VLC[C]// Conf. Laser Electr., 2019.

    [159] [159] Shen C, HolguinLerma J A, Alatawi A A, et al. GroupⅢnitride superluminescent diodes for solidstate lighting and highspeed visible light communications[J]. IEEE J. of Sel. Top. in Quantum Electron., 2019, 25(6): 110.

    [160] [160] Shen C, Ng T K, Leonard J T, et al. Highmodulationefficiency, integrated waveguide modulatorlaser diode at 448nm[J]. ACS Photonics, 2016, 3(2): 262268.

    [161] [161] Xue B, Liu Z, Yang J, et al. Frequency response of directly modulated Ⅲnitride based blue laser diode at different temperature[C]// Proc. of Asia Commun. and Photon. Conf., 2017.

    [162] [162] Xue B, Liu Z, Yang J, et al. Characteristics of Ⅲnitride based laser diode employed for short range underwater wireless optical communications[J]. Optics Communications, 2018, 410: 525530.

    [163] [163] Kruglov R, Vinogradov J, Ziemann O, et al. Eyesafe data transmission of 1.25Gbit/s over 100m SIPOF using green laser diode[J]. IEEE Photon. Technol. Lett., 2012, 24(3): 167169.

    [164] [164] Atef M, Swoboda R, Zimmermann H. Realtime 1.25Gb/s transmission over 50m SIPOF using a green laser diode[J]. IEEE Photon. Technol. Lett., 2012, 24(15): 13311333.

    [165] [165] Chi Y C, Hsieh D H, Tsai C T, et al. 450nm GaN laser diode enables highspeed visible light communication with 9Gbps QAMOFDM[J]. Opt. Express, 2015, 23(10): 1305113059.

    [166] [166] Lee C, Zhang C, Cantore M, et al. 4Gbps direct modulation of 450nm GaN laser for highspeed visible light communication[J]. Opt. Express, 2015, 23(12): 1623216237.

    [167] [167] Changmin L, Chong Z, Cantore M, et al. 2.6GHz highspeed visible light communication of 450nm GaN laser diode by direct modulation[C]// 2015 IEEE Summer Topicals Meeting Series (SUM), 2015.

    [168] [168] Oubei H M, Li C, Park K H, et al. 2.3Gbit/s underwater wireless optical communications using directly modulated 520nm laser diode[J]. Opt. Express, 2015, 23(16): 2074320748.

    [169] [169] Huang Y F, Wu T C, Chi Y C, et al. Impedance matched GaN LD package for direct OFDM communication at 14Gbps[C]// Proc. of the 2016 21st Optoelectronics and Communications Conf., 2016.

    [170] [170] Oubei H M, DurN J R, Janjua B, et al. Wireless optical transmission of 450nm, 3.2Gbit/s 16QAMOFDM signals over 6.6m underwater channel[C]// Proc. of the Conf. on Lasers and ElectroOptics, 2016.

    [171] [171] Shen C, Guo Y, Oubei H M, et al. 20meter underwater wireless optical communication link with 1.5Gbps data rate[J]. Opt. Express, 2016, 24(22): 2550225509.

    [172] [172] Watson S, Viola S, Giuliano G, et al. High speed visible light communication using blue GaN laser diodes[C]// Adv. FreeSpace Optical Communication Techniques and Applications LI, 2016.

    [173] [173] Huang Y F, Tsai C T, Kao H Y, et al. 17.6Gbps universal filtered multicarrier encoding of GaN blue LD for visible light communication[J]. Proc. SPIE, 2016, 9991: 99910A.

    [174] [174] Huang Y F, Chi Y C, Kao H Y, et al. Blue laser diode based freespace optical data transmission elevated to 18Gbps over 16m[J]. Sci. Rep., 2017, 7(1): 10478.

    [175] [175] Wu T C, Chi Y C, Wang H Y, et al. Blue laser diode enables underwater communication at 12.4Gbps[J]. Sci. Rep., 2017, 7: 40480.

    [176] [176] Chen Y, Kong M, Ali T, et al. 26m/5.5Gbps airwater optical wireless communication based on an OFDMmodulated 520nm laser diode[J]. Opt. Express, 2017, 25(13): 1476014765.

    [177] [177] Liu X, Yi S, Zhou X, et al. 34.5m underwater optical wireless communication with 2.70Gbps data rate based on a green laser diode with NRZOOK modulation[J]. Opt. Express, 2017, 25(22): 2793727947.

    [178] [178] Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8Gbps seawater transmission[J]. J. of Lightwave Technol., 2018, 36(9): 17391745.

    [179] [179] Tsonev D, Videv S, Haas H. Towards a 100Gb/s visible light wireless access network[J]. Opt. Express, 2015, 23(2): 16271637.

    [180] [180] Janjua B, Oubei H M, Duran Retamal J R, et al. Going beyond 4Gbps data rate by employing RGB laser diodes for visible light communication[J]. Opt. Express, 2015, 23(14): 1874618753.

    [181] [181] Chi Y C, Hsieh D H, Lin C Y, et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication[J]. Sci. Rep., 2015, 5: 18690.

    [182] [182] Lee C, Shen C, Oubei H M, et al. 2Gbit/s data transmission from an unfiltered laserbased phosphor converted white lighting communication system[J]. Opt. Express, 2015, 23(23): 2977929787.

    [183] [183] Chun H, Rajbhandari S, Tsonev D, et al. Visible light communication using laser diode based remote phosphor technique[C]// IEEE Int. Conf. Comm., 2015: 13921397.

    [184] [184] Kong M, Lv W, Ali T, et al. 10m 9.51Gb/s RGB laser diodesbased WDM underwater wireless optical communication[J]. Opt. Express, 2017, 25(17): 2082920834.

    [185] [185] Huang Y F, Chi Y C, Chen M K, et al. Red/green/blue LD mixed whitelight communication at 6500K with divergent diffuser optimization[J]. Opt. Express, 2018, 26(18): 2339723410.

    [186] [186] Lee C M, Shen C, Cozzan C, et al. Semipolar GaNbased laser diodes for Gbit/s white lighting communication: devices to systems[J]. Gallium Nitride Materials and Devices XIII, 2018, 10532.

    [187] [187] Wei L Y, Hsu C W, Chow C W, et al. 20.231Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visiblelight communication system[J]. Photonics Research, 2018, 6(5).

    [188] [188] Yeh CH, Chow CW, Wei LY. 1250Mbit/s OOK wireless whitelight VLC transmission based on phosphor laser diode[J]. IEEE Photonics J., 2019, 11(3): 15.

    Tools

    Get Citation

    Copy Citation Text

    LI Zhenhao, WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian, LI Hongtao. Research Progress of GaNbased Highspeed Blue and Green Light Source[J]. Semiconductor Optoelectronics, 2022, 43(3): 405

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jun. 9, 2022

    Accepted: --

    Published Online: Aug. 1, 2022

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2022060903

    Topics