Semiconductor Optoelectronics, Volume. 43, Issue 3, 405(2022)
Research Progress of GaNbased Highspeed Blue and Green Light Source
[1] [1] Tsonev D, Videv S, Haas H. Light fidelity (LiFi): Towards alloptical networking[J]. Proc. SPIE, 2014, 9007: 900702.
[2] [2] Tsiatmas A, Baggen C, Willems F, et al. An illumination perspective on visible light communications[J]. IEEE Communications Magazine, 2014, 52(7): 6471.
[3] [3] Tsai C T, Cheng C H, Kuo H C, et al. Toward highspeed visible laser lighting based optical wireless communications[J]. Progress in Quantum Electronics, 2019, 67: 100225.1100225.19.
[4] [4] Ergul O, Dinc E, Akan O B. Communicate to illuminate: Stateoftheart and research challenges for visible light communications[J]. Physical Communication, 2015, 17: 7285.
[5] [5] Jovicic A, Li J, Richardson T. Visible light communication: opportunities, challenges and the path to market[J]. IEEE Communications Magazine, 2013, 51(12): 2632.
[6] [6] Chen H, Wu C, Li H, et al. Advances and prospects in visible light communications[J]. J. of Semiconductors, 2016, 37(1): 110.
[7] [7] Li X, Bamiedakis N, Wei J, et al. μLEDbased singlewavelength bidirectional POF link with 10Gb/s aggregate data rate[J]. J. of Lightwave Technol., 2015, 33(17): 35713576.
[8] [8] AlShammaa A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHz frequencies through seawater[J]. IEEE Trans. on Antennas and Propagation, 2004, 52(11): 28432849.
[9] [9] Uribe C, Grote W. Radio communication model for underwater WSN[C]// Proc. of the 2009 3rd Inter. Conf. on New Technologies, Mobility and Security, 2009.
[10] [10] Lacovara P. Highbandwidth underwater communications[J]. Marine Technol. Society J., 2008, 42(1): 93102.
[11] [11] Sozer E M, Stojanovic M, Proakis J G. Underwater acoustic networks[J]. IEEE J. of Oceanic Engineering, 2000, 25(1): 7283.
[12] [12] Solonenko M G, Mobley C D. Inherent optical properties of Jerlov water types[J]. Appl. Opt., 2015, 54(17): 53925401.
[13] [13] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Commun. Surveys & Tutorials, 2017, 19(1): 204238.
[14] [14] Grubor J, Lee S C J, Langer K, et al. Wireless highspeed data transmission with phosphorescent whitelight LEDs[C]// Proc. of the 33rd European Conf. and Exhibition of Optical Communication, 2007.
[15] [15] Ikeda K, Horiuchi S, Tanaka T, et al. Design parameters of frequency response of GaAs—(Ga,Al)As double heterostructure LEDs for optical communications[J]. IEEE Trans. on Electron Devices, 1977, 24(7): 10011005.
[16] [16] Cai Y, Haggar J I H, Zhu C, et al. Direct epitaxial approach to achieve a monolithic onchip integration of a HEMT and a single microLED with a highmodulation bandwidth[J]. ACS Appl. Electron. Mater., 2021, 3(1): 445450.
[17] [17] Haemmer M, Roycroft B, Akhter M, et al. Sizedependent bandwidth of semipolar ($11/overline{2}2$) lightemittingdiodes[J]. IEEE Photon. Technol. Lett., 2018, 30(5): 439442.
[18] [18] Zhu S, Lin S, Li J, et al. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaNbased LEDs[J]. Appl. Phys. Lett., 2017, 111(17): 171105.
[19] [19] Mckendry J J D, Massoubre D, Zhang S, et al. Visiblelight communications using a CMOScontrolled microlightemittingdiode array[J]. J. of Lightwave Technol., 2012, 30(1): 6167.
[20] [20] Zhu S C, Zhao L X, Yang C, et al. GaNbased flipchip parallel micro LED array for visible light communication[C]// Inter. Conf. on Optoelectronics and Microelectronics Technol. and Application, 2017.
[21] [21] Tian P, Mckendry J J D, Gong Z, et al. Sizedependent efficiency and efficiency droop of blue InGaN microlight emitting diodes[J]. Appl. Phys. Lett., 2012, 101(23): 2217.
[22] [22] Yang W, Zhang S, Mckendry J J D, et al. Sizedependent capacitance study on InGaNbased microlightemitting diodes[J]. J. of Appl. Phys., 2014, 116(4): 044512.
[23] [23] Huang SC, Li H, Zhang ZH, et al. Superior characteristics of microscale light emitting diodes through tightly lateral oxideconfined scheme[J]. Appl. Phys. Lett., 2017, 110(2): 021108.
[24] [24] Konoplev S S, Bulashevich K A, Karpov S Y. From largesize to microLEDs: Scaling trends revealed by modeling[J]. Physica Status Solidi (A), 2018, 215(10): 1700508.11700508.6.
[25] [25] Gong Z, Jin S, Chen Y, et al. Sizedependent light output, spectral shift, and selfheating of 400nm InGaN lightemitting diodes[J]. J. of Appl. Phys., 2010, 107(1): 1086.
[26] [26] Tian P, Mckendry J J D, Herrnsdorf J, et al. Temperaturedependent efficiency droop of blue InGaN microlight emitting diodes[J]. Appl. Phys. Lett., 2012, 101(23): 2217.
[27] [27] Zheng Z W, Yu H, Ren B C, et al. Modulation characteristics of GaNbased lightemittingdiodes for visible light communication[J]. ECS J. of Solid State Science and Technol., 2017, 6(9): R135R8.
[28] [28] Tian P, Althumali A, Gu E, et al. Aging characteristics of blue InGaN microlight emitting diodes at an extremely high current density of 3.5kA·cm-2[J]. Semiconductor Science and Technol., 2016, 31(4): 045005.
[29] [29] Piprek J. Efficiency droop in nitridebased lightemitting diodes[J]. Physica Status Solidi (A), 2010, 207(10): 22172225.
[30] [30] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies[J]. J. of Appl. Phys., 2013, 114(7): 10.1063.
[31] [31] Lu H, Yan C, Gao W, et al. Efficiency droop effects of GaNbased lightemitting diodes on the performance of code division multiple access visiblelight communication system[J]. Optical Engineering, 2016, 55(2): 027109.
[32] [32] Mckendry J J D, Green R P, Kelly A E, et al. Highspeed visible light communications using individual pixels in a micro lightemitting diode array[J]. IEEE Photon. Technol. Lett., 2010, 22(18): 13461348.
[33] [33] Kelly A E, Mckendry J J D, Zhang S, et al. Highspeed GaN microLED arrays for data communications[C]// 14th Inter. Conf. on Trans. Opt. Netw., 2012.
[34] [34] Watson S, Mckendry J J D, Zhang S L, et al. High speed GaN microlightemitting diode arrays for data communications[J]. Proc. SPIE, 2012, 8540: 85400G.
[35] [35] Ferreira R X G, Xie E, Mckendry J J D, et al. High bandwidth GaNbased microLEDs for multiGb/s visible light communications[J]. IEEE Photon. Technol. Lett., 2016, 28(19): 20232026.
[36] [36] Xie E, Stonehouse M, Ferreira R, et al. Design, fabrication, and application of GaNbased microLED arrays with individual addressing by Nelectrodes[J]. IEEE Photonics J., 2017, 9(6): 111.
[37] [37] Tian P, Liu X, Yi S, et al. Highspeed underwater optical wireless communication using a blue GaNbased microLED[J]. Opt. Express, 2017, 25(2): 11931201.
[38] [38] Liu X, Tian P, Wei Z, et al. Gbps longdistance realtime visible light communications using a highbandwidth GaNbased microLED[J]. IEEE Photonics J., 2017, 9(6): 19.
[39] [39] ChienLan L, ChongLung H, YungFu C, et al. Highspeed lightemitting diodes emitting at 500nm with 463MHz modulation bandwidth[J]. IEEE Electron Device Lett., 2014, 35(5): 563565.
[40] [40] Chen C J, Yan J H, Chen D H, et al. A 520nm green GaN LED with high bandwidth and low current density for gigabits OFDM data communication[C]// 2018 Optical Fiber Communications Conf. and Exposition (OFC), 2018.
[41] [41] Cao H, Lin S, Ma Z, et al. Color converted white lightemitting diodes with 637.6MHz modulation bandwidth[J]. IEEE Electron Device Lett., 2019, 40(2): 267270.
[42] [42] Tian P, Mckendry J J D, Gong Z, et al. Characteristics and applications of micropixelated GaNbased light emitting diodes on Si substrates[J]. J. of Appl. Phys., 2014, 115(3): 013103.
[43] [43] Tsai S C, Lu C H, Liu C P. Piezoelectric effect on compensation of the quantumconfined Stark effect in InGaN/GaN multiple quantum wells based green lightemitting diodes[J]. Nano Energy, 2016, 28: 373379.
[44] [44] Yu L M, Wang L, Hao Z B, et al. Highspeed microLEDs for visible light communication: challenges and progresses[J]. Semiconductor Science and Technol., 2022, 37(2): 023001.
[45] [45] Romanov A E, Baker T J, Nakamura S, et al. Straininduced polarization in wurtzite Ⅲnitride semipolar layers[J]. J. of Appl. Phys., 2006, 100(2): 28.
[46] [46] Chiu C H, Lin D W, Lin C C, et al. Reduction of efficiency droop in semipolar (1/bar101) InGaN/GaN light emitting diodes grown on patterned silicon substrates[J]. Appl. Phys. Express, 2011, 4(1): 039201.
[47] [47] Pan C C, Tanaka S, Wu F, et al. Highpower, lowefficiencydroop semipolar ($20/bar{2}/bar{1}$) singlequantumwell blue lightemitting diodes[J]. Appl. Phys. Express, 2012, 5(6): 062103.
[48] [48] Monavarian M, Rashidi A, Aragon A, et al. Explanation of low efficiency droop in semipolar (202 1) InGaN/GaN LEDs through evaluation of carrier recombination coefficients[J]. Opt. Express, 2017, 25(16): 1934319353.
[49] [49] Monavarian M, Rashidi A, Aragon A A, et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN lightemitting diodes[J]. Appl. Phys. Lett., 2018, 112(4): 041104.
[50] [50] Rashidi A, Monavarian M, Aragon A, et al. Nonpolar ${m}$plane InGaN/GaN microscale lightemitting diode with 1.5GHz modulation bandwidth[J]. IEEE Electron Device Lett., 2018, 39(4): 520523.
[51] [51] Chen SW H, Huang YM, Chang YH, et al. Highbandwidth green semipolar (2021) InGaN/GaN micro lightemitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 22282235.
[52] [52] Dinh D V, Quan Z, Roycroft B, et al. GHz bandwidth semipolar (112 2) InGaN/GaN lightemitting diodes[J]. Opt. Lett., 2016, 41(24): 57525755.
[53] [53] Jeon H, Tu L W, Krames M R, et al. Development of semipolar (1122) LEDs on GaN templates[C]// LightEmitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xx, SPIE Opto. Inter. Society for Optics and Photonics, 2016.
[54] [54] Quan Z, Dinh D V, Presa S, et al. High bandwidth freestanding semipolar (1122) InGaN/GaN lightemitting diodes[J]. IEEE Photonics J., 2016, 8(5): 18.
[55] [55] Dinh D V, Akhter M, Presa S, et al. Semipolar (1122) InGaN lightemitting diodes grown on chemicallymechanically polished GaN templates[J]. Physica Status Solidi (A), 2015, 212(10): 21962200.
[56] [56] Khoury M, Li H, Li P, et al. Polarized monolithic white semipolar (2021) InGaN lightemitting diodes grown on high quality (2021) GaN/sapphire templates and its application to visible light communication[J]. Nano Energy, 2020, 67: 104236.
[57] [57] Windisch R, Knobloch A, Kuijk M, et al. Largesignalmodulation of highefficiency lightemitting diodes for optical communication[J]. IEEE J. of Quantum Electron., 2000, 36(12): 14451453.
[58] [58] Wun J M, Lin C W, Chen W, et al. GaNbased miniaturized Cyan lightemitting diodes on a patterned sapphire substrate with improved fiber coupling for very highspeed plastic optical fiber communication[J]. IEEE Photonics J., 2012, 4(5): 15201529.
[59] [59] Shi J W, Chi K L, Wun J M, et al. Ⅲnitride based Cyan lightemitting diodes with GHz bandwidth for highspeed visible light communication[J]. IEEE Electron Device Lett., 2016, 37(7): 894897.
[60] [60] Vinogradov J, Kruglov R, Engelbrecht R, et al. GaNbased Cyan lightemitting diode with up to 1GHz bandwidth for highspeed transmission over SIPOF[J]. IEEE Photonics J., 2017, 9(3): 17.
[61] [61] Rajabi K, Wang J, Jin J, et al. Improving modulation bandwidth of cplane GaNbased lightemitting diodes by an ultrathin quantum wells design[J]. Opt. Express, 2018, 26(19): 2498524991.
[62] [62] Xu F, Jin Z, Tao T, et al. Cplane blue microLED with 1.53GHz bandwidth for highspeed visible light communication[J]. IEEE Electron Device Lett., 2022, 43(6): 910913.
[63] [63] Yuan Z, Li Y, Lu X, et al. Investigation of modulation bandwidth of InGaN green microLEDs by varying quantum barrier thickness[J]. IEEE Trans. on Electron Devices, 2022: 18.
[64] [64] Lan H Y, Tseng I C, Kao H Y, et al. 752MHz modulation bandwidth of highspeed blue micro lightemitting diodes[J]. IEEE J. of Quantum Electron., 2018, 54(5): 16.
[65] [65] Okur S, Nami M, Rishinaramangalam A K, et al. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN lightemitting diodes[J]. Opt. Express, 2017, 25(3): 21782186.
[66] [66] Monavarian M, Rashidi A, Aragon A A, et al. Tradeoff between bandwidth and efficiency in semipolar (2021) InGaN/GaN single and multiplequantumwell lightemitting diodes[J]. Appl. Phys. Lett., 2018, 112(19): 191102.1191102.5.
[67] [67] Shi J W, Sheu J K, Chen C H, et al. Highspeed GaNbased green lightemitting diodes with partially ndoped active layers and currentconfined apertures[J]. IEEE Electron Device Lett., 2008, 29(2): 158160.
[68] [68] Wang L, Yang D, Hao Z B, et al. Metalorganicvapor phase epitaxy of InGaN quantum dots and their applications in lightemitting diodes[J]. Chinese Physics B, 2015, 24(6): 2530.
[69] [69] Yang D, Wang L, Hao Z B, et al. Dislocation analysis of InGaN/GaN quantum dots grown by metal organic chemical vapor deposition[J]. Superlattices and Microstructures, 2016, 99: 221225.
[70] [70] Schulz S, OReilly E P. Theory of reduced builtin polarization field in nitridebased quantum dots[J]. Phys. Rev. B, 2010, 82(3): 30863092.
[71] [71] Zhang M, Bhattacharya P, Guo W. InGaN/GaN selforganized quantum dot green light emitting diodes with reduced efficiency droop[J]. Appl. Phys. Lett., 2010, 97(1): 141101.
[72] [72] Lv W, Wang L, Wang L, et al. InGaN quantum dot green lightemitting diodes with negligible blue shift of electroluminescence peak wavelength[J]. Appl. Phys. Express, 2014, 7(2): 343352.
[73] [73] Lv W, Wang L, Wang J, et al. Green and red lightemitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method[J]. Jap. J. of Appl. Phys., 2013, 52(8S): 279287.
[74] [74] Weng G, Mei Y, Liu J, et al. Low threshold continuouswave lasing of yellowgreen InGaNQD verticalcavity surfaceemitting lasers[J]. Opt. Express, 2016, 24(14): 1554615553.
[76] [76] Wang L, Wei Z X, Chen C J, et al. 1.3GHz EO bandwidth GaNbased microLED for multigigabit visible light communication[J]. Photonics Research, 2021, 9(5): 792802.
[77] [77] Wei Z, Zhang L, Wang L, et al. 2Gbps/3m airunderwater optical wireless communication based on a singlelayer quantum dot blue microLED[J]. Opt. Lett., 2020, 45(9): 26162619.
[78] [78] TsatsulNikov A F, Kovsh A R, Zhukov A E, et al. VolmerWeber and StranskiKrastanov InAs(Al,Ga)As quantum dots emitting at 1.3μm[J]. J. of Appl. Phys., 2000, 88(11): 62726275.
[79] [79] Wang L, Wang L, Chen C J, et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of microLEDs[J]. Laser & Photonics Reviews, 2021, 15(5): 202000406.
[80] [80] Nami M, Rashidi A, Monaavarian M, et al. Electrically injected GHzclass GaN/InGaN coreshell nanowirebased μLEDs: Carrier dynamics and nanoscale homogeneity[J]. ACS Photonics, 2019, 6(7): 16181625.
[81] [81] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 355.
[82] [82] Shannon C E. A mathematical theory of communication[J]. Bell System Technical J., 1948, 27(3): 379423.
[83] [83] Xie E, Bian R, He X, et al. Over 10Gbps VLC for longdistance applications using a GaNbased seriesbiased microLED array[J]. IEEE Photonics Technol. Lett., 2020, 32(9): 499502.
[84] [84] Tsonev D, Chun H, Rajbhandari S, et al. A 3Gb/s singleLED OFDMbased wireless VLC link using a gallium nitride μLED[J]. IEEE Photon. Technol. Lett., 2014, 26(7): 637640.
[85] [85] Xie E, He X, Islim M S, et al. Highspeed visible light communication based on a Ⅲnitride seriesbiased microLED array[J]. J. of Lightwave Technol., 2019, 37(4): 11801186.
[86] [86] Lan H Y, Tseng I C, Lin Y H, et al. Highspeed integrated microLED array for visible light communication[J]. Opt. Lett., 2020, 45(8): 22032206.
[87] [87] Arvanitakis G N, Bian R, Mckendry J J D, et al. Gb/s underwater wireless optical communications using seriesconnected GaN microLED arrays[J]. IEEE Photonics J., 2020, 12(2): 110.
[88] [88] Huang Y, Guo Z, Wang X, et al. GaNbased highresponse frequency and highoptical power matrix microLED for visible light communication[J]. IEEE Electron Device Lett., 2020, 41(10): 15361639.
[89] [89] Chang Y H, Huang Y M, Gunawan W H, et al. 4.343Gbit/s green semipolar (2021) μLED for high speed visible light communication[J]. IEEE Photonics J., 2021, 13(4): 14.
[90] [90] Lin G R, Kuo H C, Cheng C H, et al. Ultrafast 2×2 green microLED array for optical wireless communication beyond 5Gbit/s[J]. Photonics Research, 2021, 9(10): 10.1364.
[91] [91] Zhang S, Watson S, Mckendry J J D, et al. 1.5Gbit/s multichannel visible light communications using CMOScontrolled GaNbased LEDs[J]. J. of Lightwave Technol., 2013, 31(8): 12111216.
[92] [92] Carreira J F C, Xie E, Bian R, et al. Onchip GaNbased dualcolor microLED arrays and their application in visible light communication[J]. Opt. Express, 2019, 27(20): A1517A1528.
[93] [93] Pezeshki B, Tselikov A, Kalman R, et al. Wide and parallel LEDbased optical links using multicore fiber for chiptochip communications[C]// Proc. of the Optical Fiber Communication Conf. (OFC), 2021.
[94] [94] Huang Y, Guo Z, Huang H, et al. Influence of current density and capacitance on the bandwidth of VLC LED[J]. IEEE Photonics Technol. Lett., 2018, 30(9): 773776.
[95] [95] Huang H, Wu H, Huang C, et al. Cascade GaNbased blue microlightemitting diodes for dual function of illumination and visible light communication[J]. J. of Physics D: Appl. Phys., 2020, 53(35): 355103.
[96] [96] Rajbhandari S, Mckendry J J D, Herrnsdorf J, et al. A multigigabit per second integrated multipleinput multipleoutput VLC demonstrator[J]. J. of Lightwave Technol., 2017, 35(20): 43584365.
[97] [97] Carreira J F C, Guilhabert B J E, Mckendry J J D, et al. Integration of microLED array on CMOS by transfer printing[C]// IEEE Photon Conf., 2018.
[98] [98] Pezeshki B, Kalman R, Tselikov A, et al. High Speed Light MicroLEDs for Visible Wavelength Communication[C]// Proc. of Conf. on LightEmitting Devices, Materials, and Applications XXV, 2021: 10.1117.
[99] [99] Pezeshki B, Khoeini F, Tselikov A, et al. MicroLED arraybased optical links using imaging fiber for chiptochip communications[C]// Proc. of the Optical Fiber Communication Conf. (OFC), 2022.
[100] [100] Kottke C, Habel K, Grobe L, et al. Singlechannel wireless transmission at 806Mbit/s using a whitelight LED and a PINbased receiver[C]// 14th Inter. Conf. on Transparent Optical Networks, 2012.
[101] [101] Carreira J F C, Griffiths A D, Xie E, et al. Direct integration of microLEDs and a SPAD detector on a silicon CMOS chip for data communications and timeofflight ranging[J]. Opt. Express, 2020, 28(5): 69096917.
[102] [102] Hassan N B, Ali M, Griffiths A D, et al. Integration of an LED/SPAD optical wireless transceiver with CubeSat onboard systems[C]// 2020 IEEE Photonics Conf. (IPC), 2020.
[103] [103] Griffiths A D, Herrnsdorf J, Henderson R K, et al. Highsensitivity intersatellite optical communications using chipscale LED and singlephoton detector hardware[J]. Opt. Express, 2021, 29(7): 1074910768.
[104] [104] Lin R, Liu X, Zhou G, et al. InGaN microLED array enabled advanced underwater wireless optical communication and underwater charging[J]. Adv. Optical Materials, 2021, 9(12): 2002211.
[105] [105] Zhou G, Lin R, Qian Z, et al. GaNbased microLEDs and detectors defined by current spreading layer: sizedependent characteristics and their multifunctional applications[J]. J. of Physics D: Appl. Phys., 2021, 54(33): 335104.
[106] [106] Tian P, Mckendry J J, Gu E, et al. Fabrication, characterization and applications of flexible vertical InGaN microlight emitting diode arrays[J]. Opt. Express, 2016, 24(1): 699707.
[107] [107] Li X, Wu L, Liu Z, et al. Design and characterization of active matrix LED microdisplays with embedded visible light communication transmitter[J]. J. of Lightwave Technol., 2016, 34(14): 34493457.
[108] [108] Jalajakumari A V N, Xie E, Mckendry J, et al. Highspeed integrated digital to light converter for short range visible light communication[J]. IEEE Photonics Technol. Lett., 2017, 29(1): 118121.
[109] [109] Griffiths A D, Islim M S, Herrnsdorf J, et al. CMOSintegrated GaN LED array for discrete power level stepping in visible light communications[J]. Opt. Express, 2017, 25(8): A338A345.
[110] [110] Huang H, Wu H, Huang C, et al. Thermal effects on the electrical and optical characteristics of microlightemitting diodes with different current spreading layer[J]. Physica Status Solidi (A), 2019, 216(14): 10.1002.
[111] [111] Huang H, Huang C, Wu H, et al. Compromise between illumination performance and modulation bandwidth for microsize white lightemitting diode by selecting injected current[J]. Appl. Phys. A, 2019, 125(8): 522.1522.8.
[112] [112] James Singh K, Huang YM, Ahmed T, et al. MicroLED as a promising candidate for highspeed visible light communication[J]. Appl. Sciences, 2020, 10(20): 7384.
[113] [113] Tian P, Wu Z, Liu X, et al. Largesignal modulation characteristics of a GaNbased microLED for Gbps visiblelight communication[J]. Appl. Phys. Express, 2018, 11(4): 044101.
[114] [114] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys. Rev., 1946, 69(12): 3738.
[115] [115] Gye Mo Y, Macdougal M H, Pudikov V, et al. Influence of mirror reflectivity on laser performance of verylowthreshold verticalcavity surfaceemitting lasers[J]. IEEE Photon. Technol. Lett., 1995, 7(11): 12281230.
[116] [116] Wu J Z, Long H, Shi X L, et al. Reduction of lasing threshold of GaNbased verticalcavity surfaceemitting lasers by using short cavity lengths[J]. IEEE Trans. on Electron Devices, 2018, 65(6): 25042508.
[117] [117] Zhang C, Elafandy R, Han J. Distributed Bragg reflectors for GaNbased verticalcavity surfaceemitting lasers[J]. Appl. Sciences, 2019, 9(8): 1593.
[118] [118] Mei Y, Xu R B, Xu H, et al. A comparative study of thermal characteristics of GaNbased VCSELs with three different typical structures[J]. Semiconductor Science and Technol., 2017, 33(1): 015016.
[119] [119] Yu H C, Zheng Z W, Mei Y, et al. Progress and prospects of GaNbased VCSEL from near UV to green emission[J]. Progress in Quantum Electron., 2018, 57: 119.
[120] [120] Lu T C, Kao C C, Kuo H C, et al. CW lasing of current injection blue GaNbased vertical cavity surface emitting laser[J]. Appl. Phys. Lett., 2008, 92(14): 141102.
[121] [121] Lu T C, Kao C C, Kuo H C, et al. CW lasing of current injection blue GaNbased vertical cavity surface emitting lasers[C]// 2008 Conf. on Lasers and ElectroOptics, 2008: 12.
[122] [122] Kuramoto M, Kobayashi S, Akagi T, et al. Enhancement of slope efficiency and output power in GaNbased verticalcavity surfaceemitting lasers with a SiO2buried lateral index guide[J]. Appl. Phys. Lett., 2018, 112(11): 111104.
[123] [123] Muranaga W, Akagi T, Fuwa R, et al. GaNbased verticalcavity surfaceemitting lasers using ntype conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SCCC01.
[124] [124] Takeuchi T, Kamiyama S, Iwaya M, et al. GaNbased verticalcavity surfaceemitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Rep. Prog. Phys., 2019, 82(1): 012502.
[125] [125] Lu T C, Chen S W, Wu T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Appl. Phys. Lett., 2010, 97(7): 868.
[126] [126] Hsieh D H, Tzou A J, Kao T S, et al. Improved carrier injection in GaNbased VCSEL via AlGaN/GaN multiple quantum barrier electron blocking layer[J]. Opt. Express, 2015, 23(21): 2714527151.
[127] [127] Higuchi Y, Omae K, Matsumura H, et al. Roomtemperature CW lasing of a GaNbased verticalcavity surfaceemitting laser by current injection[J]. Appl. Phys. Express, 2008, 1(12): 121002.
[128] [128] Chen L R, Chen B Y, Kuo S Y, et al. Antiguiding and guiding effects in GaNbased verticalcavity surfaceemitting lasers[J]. AIP Advances, 2020, 10(2): 025204.
[129] [129] Onishi T, Imafuji O, Nagamatsu K, et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE J. of Quantum Electron., 2012, 48(9): 11071112.
[130] [130] Izumi S, Fuutagawa N, Hamaguchi T, et al. Roomtemperature continuouswave operation of GaNbased verticalcavity surfaceemitting lasers fabricated using epitaxial lateral overgrowth[J]. Appl. Phys. Express, 2015, 8(6): 11071112.
[131] [131] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwattclass GaNbased blue verticalcavity surfaceemitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (A), 2016, 213(5): 11701176.
[132] [132] Hamaguchi T, Nakajima H, Ito M, et al. Lateral carrier confinement of GaNbased verticalcavity surfaceemitting diodes using boron ion implantation[J]. Jap. J. of Appl. Phys., 2016, 55(12): 122101.
[133] [133] Hamaguchi T, Tanaka M, Mitomo J, et al. Lateral optical confinement of GaNbased VCSEL using an atomically smooth monolithic curved mirror[J]. Sci. Rep., 2018, 8(1): 10350.
[134] [134] Nakajima H, Hamaguchi T, Tanaka M, et al. Single transverse mode operation of GaNbased verticalcavity surfaceemitting laser with monolithically incorporated curved mirror[J]. Appl. Phys. Express, 2019, 12(8): 084003.
[135] [135] Nakajima H, Hamaguchi T, Tanaka M, et al. Recent progress in GaNbased verticalcavity surfaceemitting lasers with lateral optical confinement due to an incorporated curved mirror[C]// IEEE Conf. on Lasers and ElectroOptics, 2018.
[136] [136] Hamaguchi T, Nakajima H, Fuutagawa N. GaNbased verticalcavity surfaceemitting lasers incorporating dielectric distributed Bragg reflectors[J]. Appl. Sciences, 2019, 9(4): 733.
[137] [137] Hamaguchi T, Tanaka M, Nakajima H. A review on the latest progress of visible GaNbased VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SC0806.
[138] [138] Leonard J T, Young E C, Yonkee B P, et al. Demonstration of a Ⅲnitride verticalcavity surfaceemitting laser with a Ⅲnitride tunnel junction intracavity contact[J]. Appl. Phys. Lett., 2015, 107(9): 75290.
[139] [139] Lee S, Forman C A, Kearns J, et al. Demonstration of GaNbased verticalcavity surfaceemitting lasers with buried tunnel junction contacts[J]. Opt. Express, 2019, 27(22): 3162131628.
[140] [140] Liu W J, Chen S Q, Hu X L, et al. Low threshold lasing of GaNbased VCSELs with subnanometer roughness polishing[J]. IEEE Photon. Technol. Lett., 2013, 25(20): 20142017.
[141] [141] Liu W J, Hu X L, Ying L Y, et al. Room temperature continuous wave lasing of electrically injected GaNbased vertical cavity surface emitting lasers[J]. Appl. Phys. Lett., 2014, 104(25): 25116.
[142] [142] Cai Lie, Zhang Baoping, Zhang Jiangyong, et al. Fabrication and characteristics of GaNbased blue VCSEL[J]. Chinese J. of Luminescence, 2016, 37(4): 452456.
[143] [143] Mei Y, Xu R B, Weng G E, et al. Tunable InGaN quantum dot microcavity light emitters with 129nm tuning range from yellowgreen to violet[J]. Appl. Phys. Lett., 2017, 111(12): 121107.
[144] [144] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Sci. Appl., 2017, 6(1): e16199.
[145] [145] Xu R B, Mei Y, Zhang B P, et al. Simultaneous blue and green lasing of GaNbased verticalcavity surfaceemitting lasers[J]. Semiconductor Science and Technol., 2017, 32(10): 105012.
[146] [146] Mei Y, Xu R B, Ying L Y, et al. Room temperature continuous wave lasing of GaNbased green verticalcavity surfaceemitting lasers[J]. Gallium Nitride Materials and Devices Xiv, 2019, 10918.
[147] [147] Xu R, Mei Y, Xu H, et al. Effects of lateral optical confinement InGaN VCSELs with double dielectric DBRs[J]. IEEE Photonics J., 2020, 12(2): 18.
[148] [148] Xu H, Mei Y, Xu R B, et al. Green VCSELs based on nitride semiconductors[J]. Jap. J. of Appl. Phys., 2020, 59(SO): SO0803.
[149] [149] Huang S Y, Hang R H, Shi J W, et al. Highperformance InGaNbased green resonantcavity lightemitting diodes for plastic optical fiber applications[J]. J. of Lightwave Technol., 2009, 27(18): 40844094.
[150] [150] Tsai C L, Xu Z F. Lineofsight visible light communications with InGaNbased resonant cavity LEDs[J]. IEEE Photon. Technol. Lett., 2013, 25(18): 17931796.
[151] [151] Tsai C L, Yen C T, Huang W J, et al. InGaNbased resonantcavity lightemitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications[J]. J. of Display Technol., 2013, 9(5): 365370.
[152] [152] Cai W, Yuan J, Ni S, et al. GaNonSi resonantcavity lightemitting diode incorporating top and bottom dielectric distributed Bragg reflectors[J]. Appl. Phys. Express, 2019, 12(3): 032004.
[153] [153] Kuramoto M, Kobayashi S, Akagi T, et al. Nanoheight cylindrical waveguide in GaNbased verticalcavity surfaceemitting lasers[J]. Appl. Phys. Express, 2020, 13(8): 082005.
[154] [154] Denault K A, Cantore M, Nakamura S, et al. Efficient and stable laserdriven white lighting[J]. AIP Advances, 2013, 3(7): 072107.
[155] [155] Shen C, Ng T K, Leonard J T, et al. Highbrightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droopfree solidstate lighting and visiblelight communications[J]. Opt. Lett., 2016, 41(11): 26082611.
[156] [156] Shen C, Ng T K, Lee C, et al. Semipolar InGaNbased superluminescent diodes for solidstate lighting and visible light communications[C]// Gallium Nitride Materials and Devices Xii, 2017: 10104.
[157] [157] Alatawi A A, HolguinLerma J A, Kang C H, et al. Blue superluminescent diode on cplane GaN beyond gigahertz modulation bandwidth for visible light communication[C]// 2019 Conf. on Lasers and ElectroOptics Europe & European Quantum Electronics Conf. (Cleo/EuropeEqec), 2019.
[158] [158] Alatawi A A, HolguinLerma J A, Kang C H, et al. Blue superluminescent diodes with GHz bandwidth exciting perovskite nanocrystals for high CRI white lighting and highspeed VLC[C]// Conf. Laser Electr., 2019.
[159] [159] Shen C, HolguinLerma J A, Alatawi A A, et al. GroupⅢnitride superluminescent diodes for solidstate lighting and highspeed visible light communications[J]. IEEE J. of Sel. Top. in Quantum Electron., 2019, 25(6): 110.
[160] [160] Shen C, Ng T K, Leonard J T, et al. Highmodulationefficiency, integrated waveguide modulatorlaser diode at 448nm[J]. ACS Photonics, 2016, 3(2): 262268.
[161] [161] Xue B, Liu Z, Yang J, et al. Frequency response of directly modulated Ⅲnitride based blue laser diode at different temperature[C]// Proc. of Asia Commun. and Photon. Conf., 2017.
[162] [162] Xue B, Liu Z, Yang J, et al. Characteristics of Ⅲnitride based laser diode employed for short range underwater wireless optical communications[J]. Optics Communications, 2018, 410: 525530.
[163] [163] Kruglov R, Vinogradov J, Ziemann O, et al. Eyesafe data transmission of 1.25Gbit/s over 100m SIPOF using green laser diode[J]. IEEE Photon. Technol. Lett., 2012, 24(3): 167169.
[164] [164] Atef M, Swoboda R, Zimmermann H. Realtime 1.25Gb/s transmission over 50m SIPOF using a green laser diode[J]. IEEE Photon. Technol. Lett., 2012, 24(15): 13311333.
[165] [165] Chi Y C, Hsieh D H, Tsai C T, et al. 450nm GaN laser diode enables highspeed visible light communication with 9Gbps QAMOFDM[J]. Opt. Express, 2015, 23(10): 1305113059.
[166] [166] Lee C, Zhang C, Cantore M, et al. 4Gbps direct modulation of 450nm GaN laser for highspeed visible light communication[J]. Opt. Express, 2015, 23(12): 1623216237.
[167] [167] Changmin L, Chong Z, Cantore M, et al. 2.6GHz highspeed visible light communication of 450nm GaN laser diode by direct modulation[C]// 2015 IEEE Summer Topicals Meeting Series (SUM), 2015.
[168] [168] Oubei H M, Li C, Park K H, et al. 2.3Gbit/s underwater wireless optical communications using directly modulated 520nm laser diode[J]. Opt. Express, 2015, 23(16): 2074320748.
[169] [169] Huang Y F, Wu T C, Chi Y C, et al. Impedance matched GaN LD package for direct OFDM communication at 14Gbps[C]// Proc. of the 2016 21st Optoelectronics and Communications Conf., 2016.
[170] [170] Oubei H M, DurN J R, Janjua B, et al. Wireless optical transmission of 450nm, 3.2Gbit/s 16QAMOFDM signals over 6.6m underwater channel[C]// Proc. of the Conf. on Lasers and ElectroOptics, 2016.
[171] [171] Shen C, Guo Y, Oubei H M, et al. 20meter underwater wireless optical communication link with 1.5Gbps data rate[J]. Opt. Express, 2016, 24(22): 2550225509.
[172] [172] Watson S, Viola S, Giuliano G, et al. High speed visible light communication using blue GaN laser diodes[C]// Adv. FreeSpace Optical Communication Techniques and Applications LI, 2016.
[173] [173] Huang Y F, Tsai C T, Kao H Y, et al. 17.6Gbps universal filtered multicarrier encoding of GaN blue LD for visible light communication[J]. Proc. SPIE, 2016, 9991: 99910A.
[174] [174] Huang Y F, Chi Y C, Kao H Y, et al. Blue laser diode based freespace optical data transmission elevated to 18Gbps over 16m[J]. Sci. Rep., 2017, 7(1): 10478.
[175] [175] Wu T C, Chi Y C, Wang H Y, et al. Blue laser diode enables underwater communication at 12.4Gbps[J]. Sci. Rep., 2017, 7: 40480.
[176] [176] Chen Y, Kong M, Ali T, et al. 26m/5.5Gbps airwater optical wireless communication based on an OFDMmodulated 520nm laser diode[J]. Opt. Express, 2017, 25(13): 1476014765.
[177] [177] Liu X, Yi S, Zhou X, et al. 34.5m underwater optical wireless communication with 2.70Gbps data rate based on a green laser diode with NRZOOK modulation[J]. Opt. Express, 2017, 25(22): 2793727947.
[178] [178] Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8Gbps seawater transmission[J]. J. of Lightwave Technol., 2018, 36(9): 17391745.
[179] [179] Tsonev D, Videv S, Haas H. Towards a 100Gb/s visible light wireless access network[J]. Opt. Express, 2015, 23(2): 16271637.
[180] [180] Janjua B, Oubei H M, Duran Retamal J R, et al. Going beyond 4Gbps data rate by employing RGB laser diodes for visible light communication[J]. Opt. Express, 2015, 23(14): 1874618753.
[181] [181] Chi Y C, Hsieh D H, Lin C Y, et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication[J]. Sci. Rep., 2015, 5: 18690.
[182] [182] Lee C, Shen C, Oubei H M, et al. 2Gbit/s data transmission from an unfiltered laserbased phosphor converted white lighting communication system[J]. Opt. Express, 2015, 23(23): 2977929787.
[183] [183] Chun H, Rajbhandari S, Tsonev D, et al. Visible light communication using laser diode based remote phosphor technique[C]// IEEE Int. Conf. Comm., 2015: 13921397.
[184] [184] Kong M, Lv W, Ali T, et al. 10m 9.51Gb/s RGB laser diodesbased WDM underwater wireless optical communication[J]. Opt. Express, 2017, 25(17): 2082920834.
[185] [185] Huang Y F, Chi Y C, Chen M K, et al. Red/green/blue LD mixed whitelight communication at 6500K with divergent diffuser optimization[J]. Opt. Express, 2018, 26(18): 2339723410.
[186] [186] Lee C M, Shen C, Cozzan C, et al. Semipolar GaNbased laser diodes for Gbit/s white lighting communication: devices to systems[J]. Gallium Nitride Materials and Devices XIII, 2018, 10532.
[187] [187] Wei L Y, Hsu C W, Chow C W, et al. 20.231Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visiblelight communication system[J]. Photonics Research, 2018, 6(5).
[188] [188] Yeh CH, Chow CW, Wei LY. 1250Mbit/s OOK wireless whitelight VLC transmission based on phosphor laser diode[J]. IEEE Photonics J., 2019, 11(3): 15.
Get Citation
Copy Citation Text
LI Zhenhao, WANG Lai, HAO Zhibiao, LUO Yi, SUN Changzheng, HAN Yanjun, XIONG Bing, WANG Jian, LI Hongtao. Research Progress of GaNbased Highspeed Blue and Green Light Source[J]. Semiconductor Optoelectronics, 2022, 43(3): 405
Special Issue:
Received: Jun. 9, 2022
Accepted: --
Published Online: Aug. 1, 2022
The Author Email: