Acta Optica Sinica, Volume. 44, Issue 3, 0322002(2024)

Alignment Method for Off-Axis Optical Systems Based on CGH Multi-Mirror Attitude Determination

Yifan Wu1,2, Jianfa Chen1,2、*, Zeyao Cui1,2, and Haoyang Huang1,2
Author Affiliations
  • 1Luoyang Institute of Electro-Optical Equipment, Aviation Industry Corporation of China, Ltd., Luoyang 471009, Henan, China
  • 2National Key Laboratory of Space Based Information Perception and Fusion, Luoyang 471009, Henan, China
  • show less
    Figures & Tables(16)
    CGH design flow
    Trends in stripe linewidth of CGH. (a) Effect of raidus of curvature; (b) effect of envelope aperture
    Adjustment flow diagram
    Drawing of the lighpath of off-axis TMA system
    Drawing of CGH design. (a) Drawing of CGH design; (b) drawing of the lighpath for two mirrors locating
    Simulation results of CGH shape detection for primary mirror and third mirror. (a) Result of primary mirror; (b) result of third mirror
    Simplified CGH model
    Results of transmitted wavefront of CGH. (a) Result of primary mirror holographic region; (b) result of third mirror holographic region
    Lightpath of optical system attitude determination using CGH
    Result of wavefront error measurement of center field of view
    • Table 1. Designed system parameters

      View table

      Table 1. Designed system parameters

      ParameterValue
      Light aperture of primary mirror210 mm
      Light aperture of third mirror120 mm
      Operating band

      Near infrared(NIR)band:0.7-0.9 μm;

      Long wave infrared(LWIR)band:8-12 μm

      Field of view(FoV)

      NIR band:0.4°×0.4°

      LWIR band:2°×2°

      Imaging quality

      Full FoV of NIR RMS:<0.10λ

      Full FoV of LWIR RMS:<0.23λ

    • Table 2. Influence on wavefront by primary error in CGH fabrication

      View table

      Table 2. Influence on wavefront by primary error in CGH fabrication

      TypeToleranceRMS /λ
      Stripe linewidth0.2 μm0.011
      Etching depth1%0.005
      Duty cycle1%
    • Table 3. Error of physical CGH

      View table

      Table 3. Error of physical CGH

      TypeErrorRMS /λ
      Primary area RMS7.8 nm0.0123
      Third area RMS6.7 nm0.0106
      Duty cycle0.4%0.0032
    • Table 4. CGH locating accuracy

      View table

      Table 4. CGH locating accuracy

      Mirrorα /(″)β /(″)γ /(″)X decenter /μmY decenter /μmZ /μm
      Primary mirror13.6810.0892.1626.135.02.1
      Third mirror12.2426.64483.8051.965.83.0
    • Table 5. Value range of various tolerances

      View table

      Table 5. Value range of various tolerances

      Tolerance typePrimary mirrorThird mirror
      X decenter /μm±50±100
      Y decenter /μm±50±100
      Z/μm±5±5
      Tilt /(″)±100±500
    • Table 6. Results of wavefront error measurement of full field of view

      View table

      Table 6. Results of wavefront error measurement of full field of view

      Elevation angle α /(°)WFE RMS of full FoV/λ
      β=-1°β=-0.2°β=0°β=0.2°β=1°
      -10.1260.1180.089
      -0.20.0830.0840.080
      00.0960.0930.0790.0850.078
      0.20.0870.0880.082
      10.0840.1130.080
    Tools

    Get Citation

    Copy Citation Text

    Yifan Wu, Jianfa Chen, Zeyao Cui, Haoyang Huang. Alignment Method for Off-Axis Optical Systems Based on CGH Multi-Mirror Attitude Determination[J]. Acta Optica Sinica, 2024, 44(3): 0322002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Sep. 13, 2023

    Accepted: Oct. 10, 2023

    Published Online: Mar. 4, 2024

    The Author Email: Chen Jianfa (biterika@qq.com)

    DOI:10.3788/AOS231547

    Topics