Journal of Innovative Optical Health Sciences, Volume. 7, Issue 1, 1330003(2014)
CHARACTERIZATION OF SIGNAL CONDUCTION ALONG DEMYELINATED AXONS BY ACTIONPOTENTIAL- ENCODED SECOND HARMONIC GENERATION
[1] [1] H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, H. Hamaguchi, "Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)," Opt. Express 20(9), 9551–9557 (2012).
[2] [2] A. Wunder, J. Klohs, U. Dirnagl, "Non-invasive visualization of CNS inflammation with nuclear and optical imaging," Neuroscience 158(3), 1161–1173 (2009).
[3] [3] B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, M. J. Schnitzer, "Advances in light microscopy for neuroscience," Annu. Rev. Neurosci. 32(435), 1–79 (2009).
[4] [4] D. A. Dombeck, M. Blanchard-Desce, W. W. Webb, "Optical recording of action potentials with secondharmonic generation microscopy," J. Neurosci. 24 (4), 999–1003 (2004).
[5] [5] D. A. Dombeck, L. Sacconi, M. Blanchard-Desce, W. W. Webb, "Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy," J. Neurophysiol. 94(5), 3628–3636 (2005).
[6] [6] M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, R. Yuste, "Imaging membrane potential in dendritic spines," Proc. Natl. Acad. Sci. 103(3), 786–790 (2006).
[7] [7] M. Nuriya, M. Yasui, "Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging," J. Biomed. Opt. 15(2), 020503 (2010).
[8] [8] B. A. Nemet, V. Nikolenko, R. Yuste, "Second harmonic imaging of membrane potential of neurons with retinal," J. Biomed. Opt. 9(5), 873–881 (2004).
[9] [9] A. L. Hodgkin, A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiol. 117(4), 500–544 (1952).
[10] [10] Z. J. Koles, M. Rasminsky, "A computer simulation of conduction in demyelinated nerve fibres," J. Physiol. 227, 351–364 (1972).
[11] [11] Y. G. Yu, Y. S. Shu, D. A. McCormick, "Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics," J. Neurosci. 28(29), 7260–7272 (2008).
[12] [12] F. N. Quandt, F. A. Davis, "Action potential refractory period in axonal demyelination: A computer simulation," Biol. Cybern. 67(6), 545–552 (1992).
[13] [13] M. N. Shneider, A. A. Voronin, A. M. Zheltikov, "Action-potential-encoded second-harmonic generation as an ultrafast local probe for nonintrusive membrane diagnostics," Phys. Rev. E 81(3), 031926 (2010).
[14] [14] M. N. Shneider, A. A. Voronin, A. M. Zheltikov, "Modeling the action-potential-sensitive nonlinearoptical response of myelinated nerve fibers and short-term memory," J. Appl. Phys. 110(9), 094702 (2011).
[15] [15] H. Q. Yang, X. G. Chen, Y. M. Huang, Z. H. Luo, H. Li, S. S. Xie, "Membrane potential dynamics of nerve fibers fast probed by action-potential-encoded second harmonic generation," Acta Opt. Sin. 32(4), 0417001 (2012).
[16] [16] H. Q. Yang, Z. H. Luo, X. G. Chen, Y. M. Huang, S. S. Xie, "Simulating the demyelination of a nerve fiber by action potential encoded second harmonic generation," Proc. SPIE 8553, 85530Z-1–9 (2012).
[17] [17] C. Lebrun, C. Bensa, M. Debouverie, S. Wiertlevski, D. Brassat, J. D. Seze, L. Rumbach, J. Pelletier, P. Labauge, B. Brochet, A. Tourbah, P. Clavelou, "Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, Cerebrospinal Fluid, and Visual Evoked Potential," Arch. Neurol. 66(7), 841–846 (2009).
[18] [18] C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, K. Fujihara, E. Havrdova, M. Hutchinson, L. Kappos, F. D. Lublin, X. Montalban, P. O'Connor, M. Sandberg-Wollheim, A. J. Thompson, E. Waubant, B. Weinshenker, J. S. Wolinsky, "Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria," Ann. Neurol. 69(2), 292–302 (2011).
[19] [19] L. Mayo, F. J. Quintana, H. L. Weiner, "The innate immune system in demyelinating disease," Immunol. Rev. 248(1), 170–187 (2012).
[20] [20] R. Dutta, B. D. Trapp, "Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis," Prog. Neurobiol. 93(1), 1–12 (2011).
[21] [21] C. Lucchinetti, W. Bruck, "The pathology of primary progressive multiple sclerosis," Mult. Scler. 10(3), S23–S30 (2004).
[22] [22] A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann,W. Brück, H. Rauschka, M. Bergmann, M. Schmidbauer, J. E. Parisi, H. Lassmann, "Cortical demyelination and diffuse white matter injury in multiple sclerosis," Brain 128(11), 2705–2712 (2005).
[23] [23] S. Bramow, J. M. Frischer, H. Lassmann, N. Koch- Henriksen, C. F. Lucchinetti, P. S. S rensen, H. Laursen, "Demyelination versus remyelination in progressive multiple sclerosis," Brain 133(10), 2983–2998 (2010).
[24] [24] J. M. Margolis, R. Fowler, B. H. Johnson, C. A. Kassed, K. Kahler, "Disease-modifying drug initiation patterns in commercially insured multiple sclerosis patients: A retrospective cohort study," BioMed Central Neurology. 11(122), 1–10 (2011).
[25] [25] B. D. Trapp, K. Nave, "Multiple Sclerosis: An immune or neurodegenerative disorder " Annu. Rev. Neurosci. 31, 247–269 (2008).
[26] [26] J. J. G. Geurts, F. Barkhof, "Grey matter pathology in multiple sclerosis," Lancet Neurol. 7(9), 841–851 (2008).
[27] [27] D. Debanne, E. Campanac, A. Bialowas, E. Carlier, G. Alcaraz, "Axon physiology," Physiol. Rev. 91(2), 555–602 (2011).
[28] [28] A. Carpio, I. Peral, "Propagation failure along myelinated nerves," J. Nonlinear Sci. 21(4), 499– 520 (2011).
[29] [29] J. F. Fohlmeister, E. D. Cohen, E. A. Newman, "Mechanisms and distribution of ion channels in retinal ganglion cells: Using temperature as an independent variable," J. Neurophysiol. 103(3), 1357–1374 (2010).
[30] [30] C. C. McIntyre, A. G. Richardson, W. M. Grill, "Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle," J. Neurophysiol. 87(2), 995–1006 (2002).
[31] [31] J. E. Smit, T. Hanekom, J. J. Hanekom, "Modelled temperature-dependent excitability behaviour of a single ranvier node for a human peripheral sensory nerve fibre," Biol. Cybern. 100(1), 49–58 (2009).
[32] [32] B. P. Bean, "The action potential in mammalian central neurons," Nat. Rev. Neurosci. 8, 451–465 (2007).
[33] [33] S. G. Waxman, "Determinants of conduction velocity in myelinated nerve fibers," Muscle Nerve 3 (2), 141–150 (1980).
[34] [34] C. H. Fry, R. I. Jabr, "The action potential and nervous conduction," Surgery (Oxford) 28(2), 49–54 (2010).
[35] [35] D. I. Stephanova, M. Daskalova, A. S. Alexandrov, "Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies Part I," Clin. Neurophysiol. 116(5), 1153–1158 (2005).
[36] [36] P. A. Felts, T. A. Baker, K. J. Smith, "Conduction in segmentally demyelinated mammalian central axons," J. Neurosci. 17(19), 7267–7277 (1997).
[37] [37] H. Bostock, P. Grafe, "Activity-dependent excitability changes in normal and demyelinated rat spinal root axons," J. Physiol. 365, 239–257 (1985).
[38] [38] S. Kuwabara, Y. Nakajima, T. Hattori, S. Toma, K. Mizobuchi, K. Ogawara, "Activity-dependent excitability changes in chronic inflammatory demyelinating polyneuropathy: A microneurographic study," Muscle Nerve 22(7), 899–904 (1999).
Get Citation
Copy Citation Text
ZHI-HUI LUO, JIANG-XU CHEN, YI-MEI HUANG, HONG-QIN YANG, JU-QIANG LIN, HUI LI, SHU-SEN XIE. CHARACTERIZATION OF SIGNAL CONDUCTION ALONG DEMYELINATED AXONS BY ACTIONPOTENTIAL- ENCODED SECOND HARMONIC GENERATION[J]. Journal of Innovative Optical Health Sciences, 2014, 7(1): 1330003
Received: May. 31, 2013
Accepted: Sep. 15, 2013
Published Online: Jan. 10, 2019
The Author Email: YANG HONG-QIN (hqyang@fjnu.edu.cn)