Optics and Precision Engineering, Volume. 31, Issue 21, 3178(2023)

Mandibular fracture detection with 3M-YOLOv5 network based on enhanced feature extraction capability

Tao ZHOU1...2, Yuhu DU1,*, Daozong SHI1, Caiyue PENG1 and Huiling LU3 |Show fewer author(s)
Author Affiliations
  • 1College of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3School of Medical Information & Engineering, Ningxia Medical University, Yinchuan750004, China
  • show less
    Figures & Tables(12)
    Structure of 3M-YOLOv5 network
    Unfold and Fold operations
    Ghost convolution module
    Structure reparameterization module
    Cross dimension attention module
    Bidirectional feature fusion module
    Mandibular CT image dataset
    Detection results of mandibular fracture CT images
    Radar map of ablation experiment
    Radar map of comparison experiment
    • Table 1. Result of ablation experiment

      View table
      View in Article

      Table 1. Result of ablation experiment

      网 络参数量/MBGFLOPS精确率召回率F1值mAP值
      YOLOv57.06416.4770.953 80.948 90.953 10.956 1
      实验一12.22070.1870.986 20.971 00.978 50.990 9
      实验二9.99758.8180.974 30.967 60.970 90.982 2
      实验三8.92454.1240.982 80.972 70.977 70.984 1
      实验四10.25161.1160.982 90.977 90.980 40.989 0
      实验五9.38952.4300.982 80.971 00.976 90.987 8
      实验六8.78046.7640.973 30.930 20.951 20.977 3
      实验七11.96667.8620.986 00.957 40.971 50.979 2
      实验八8.92454.0980.974 40.971 00.972 70.979 1
      实验九11.10459.6750.881 60.913 10.897 10.920 8
      实验十10.25161.1430.993 20.988 10.990 60.991 7
    • Table 2. Comparison of experiment results with different networks

      View table
      View in Article

      Table 2. Comparison of experiment results with different networks

      网 络参数量/MBGFLOPS精确率召回率F1值mAP值FPS
      YOLOv319236.3266.1710.844 60.277 70.417 90.638 911.819 3
      YOLOv420245.5360.5270.908 30.691 70.785 30.851 59.465 7
      YOLOv57.06416.4770.953 80.948 90.953 10.956 114.051 6
      Faster RCNN21137.099370.2100.919 70.858 60.888 10.927 47.059 4
      CenterNet2232.66570.2170.877 50.524 70.656 70.794 024.972 8
      YOLOX238.93826.6350.918 40.901 20.909 70.911 822.099 2
      YOLOv72437.195104.7610.910 30.812 60.858 70.901 612.669 1
      3M-YOLOv510.25161.1430.993 20.988 10.990 60.991 72.682 6
    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Yuhu DU, Daozong SHI, Caiyue PENG, Huiling LU. Mandibular fracture detection with 3M-YOLOv5 network based on enhanced feature extraction capability[J]. Optics and Precision Engineering, 2023, 31(21): 3178

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 22, 2023

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: DU Yuhu (cy_dyh@163.com)

    DOI:10.37188/OPE.20233121.3178

    Topics