Frontiers of Optoelectronics, Volume. 15, Issue 4, 12200(2022)

Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications

Masumeh Sarkhoush1, Hassan Rasooli Saghai2、*, and Hadi Soofi3
Author Affiliations
  • 1Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran
  • 2Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz 5167636137, Iran
  • 3Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
  • show less
    References(32)

    [1] [1] Collazos, L.J., Al Huwayz, M.M., Jakomin, R., Micha, D.N., Pinto, L.D., Kawabata, R.M.S., Pires, M.P.: The role of defects on the performance of quantum dot intermediate band solar cells. J. Photovolt. 11(4), 1022–1031 (2021)

    [2] [2] Delamarre, A., Suchet, D., Cavassilas, N., Okada, Y., Sugiyama, M., Guillemoles, J.F.: An electronic ratchet is required in nanostructured intermediate band solar cells. J. Photovolt. 8(6), 1553–1559 (2018)

    [3] [3] Islam, A., Das, A., Sarkar, N., Matin, M.A., Amin, N.: Numerical analysis of PbSe/GaAs quantum dot intermediate band solar cell (QDIBSC). In: Proceedings of 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). pp. 1–6 (2018)

    [4] [4] Islam, A.A., Islam, R., Hasan, T., Hossain, E.: Projected performance of InGaAs/GaAs quantum dot solar cell: effects of cap and passivation layers. IEEE Access 8, 212339–212350 (2020)

    [5] [5] Martí, A., Cuadra, L., Luque, A.: Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transa. Electron Devices 49(9), 1632–1639 (2002)

    [6] [6] Robichaud, L., Krich, J.J.: Wurtzite InGaN/GaN quantum dots for intermediate band solar cells. In: Proceedings of 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). pp. 57–58 (2019)

    [7] [7] Rocha, B.V., Jakomin, R., Kawabata, R.M., Dornelas, L.P., Pires, M.P., Souza, P.L.: Transition energy calculation of type II InASP/InGaP quantum dots for intermediate band solar cells. In: Proceedings of 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). pp. 1–3 (2019)

    [8] [8] Hu, W., Fauzi, M.E., Igarashi, M., Higo, A., Lee, M.-Y., Li, Y., Usami, N., Samukawa, S.: Type-II Ge/Si quantum dot superlattice for intermediate-band solar cell applications. In: Proceedings of 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). pp. 1021–1023 (2013)

    [9] [9] Lee, M.Y., Tsai, Y.C., Li, Y., Samukawa, S.: Numerical simulation of physical and electrical characteristic of Ge/Si quantum dots based intermediate band solar cell. In: Proceedings of16th International Conference on Nanotechnology (2016)

    [10] [10] Tsai, Y.C., Lee, M.Y., Li, Y., Samukawa, S.: Design and simulation of intermediate band solar cell with ultradense type-II multilayer Ge/Si quantum dot superlattice. IEEE Trans. Electron Devices 64(11), 45474553 (2017)

    [11] [11] Zhang, X., Zhang, Y., Ye, Z., Li, W., Liao, T., Chen, J.: Graphenebased thermionic solar cells. IEEE Electron Device Lett. 39(2), 383–385 (2018)

    [12] [12] Nemala, S., Prathapani, S., Kartikay, P., Bhargava, P., Mallick, S., Bohm, S.: Water-based high shear exfoliated graphene-based semi-transparent stable dye-sensitized solar cells for solar power window application. J. Photovolt. 8(5), 1252–1258 (2018)

    [13] [13] Chou, J.C., Chang-Chia, L., Liao, Y.H., Lai, C.H., Nien, Y.H., Kuo, C.H., Ko, C.C.: Fabrication and electrochemical impedance analysis of dye-sensitized solar cells with titanium dioxide compact layer and graphene oxide dye absorption layer. IEEE Trans. Nanotechnol. 18, 461–466 (2019)

    [14] [14] Chen, Q., Robertson, A.W., He, K., Gong, C., Yoon, E., Kirkland, A.I., Lee, G.D., Warner, J.H.: Elongated silicon-carbon bonds at graphene edges. ACS Nano 10(1), 142–149 (2015)

    [15] [15] Javvaji, B., Shenoy, B.M., Roy Mahapatra, D., Abhilash, R., Hegde, G., Rizwan, M.: Stable configurations of graphene on silicon. Appli. Surface Sci. 414, 25–33 (2017)

    [16] [16] Arefinia, Z., Asgari, A.: Optimization study of novel few-layer graphene/silicon quantum dots/silicon hetrojunction olar cell through opt-electrical modelling. J. Quant. Electron. 54(1), 4800106 (2018)

    [17] [17] Fioretti, A.N., Boccard, M., Monnard, R., Ballif, C.: Low-temperature p-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. J. Photovolt. 9(5), 1158–1165 (2019)

    [18] [18] Mirzakhani, M.: Electronic properties and energy levels of graphene quantum dots. University Antwerpen (2017)

    [19] [19] Lin, I.T., Liu, J.M.: Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE J. Sel. Topics Quant. Electron. 20(1), 122–129 (2014)

    [20] [20] Suemitsu, M., Fukidome, H.: Epitaxial graphene on silicon substrate. J. Phy. D: Appl. Phy. 43(37), 374012 (2010)

    [21] [21] Dang, X., Dong, H., Wang, L., Zhao, Y., Guo, Z., Hou, T., Li, Y., Lee, S.T.: Semiconducting graphene on silicon from first-principle calculation. ACS Nano 9(8), 8562–8568 (2015)

    [22] [22] Daukiya, L., Nair, M.N., Cranney, M., Vonau, F., Hajjar-Garreau, S., Aubel, D., Simon, L.: Functionalization of 2D materials by intercalation. Progress in Surface Science 94(1), 1–20 (2018)

    [23] [23] Xiang, C., Kong, F., Li, K.: A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system. IEEE J. Quant. Electron. 54(1), 1–8 (2018)

    [24] [24] Junaid, M., Witjaksono, G.: Analysis of band gap in AA and AB stacked bilayer graphene by hamiltonian tight binding method. In: Proceedings of International Conference on Sensors and Technology (2019)

    [25] [25] Witjaksono, G., Junaid, M.: Analysis of tunable energy band gap of graphene layer. In: Proceedings of 7th International Conference on Photonics (2018)

    [26] [26] Xie, G., Huang, Z., Fang, M., Sha, W.E.I.: Simulating Maxwell-Schrodinger equations by high-order symplectic FDTD algorithm. IEEE J. Multiscale and Multihysics Computational Techniques 4, 143–151 (2019)

    [27] [27] Zhu L., Akiyama, H., Kanemitsu, Y.: Intrinsic and extrinsic drop in open circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host material. Sci. Rep. 8(1), 11704 (2018)

    [28] [28] Shaik, A.R., Brinkman, D., Sankin, I., Krasikov, D., Ringhofer, C., Vasileska, D.: A unified 2D solver for modeling carrier and defect transport in photovoltaic devices. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). pp. 1953–1955 (2018)

    [29] [29] Shaik, A.R., Brinkman, D., Sankin, I., Ringhofer, C., Krasikov, D., Kang, H., Benes, B., Vasileska, D.: PVRD-FASP: a unified solver for modeling carrier and defect transport in photovoltaic devices. IEEE J. Photovolt. 9(6), 1602–1613 (2019)

    [30] [30] Chen, W., Gao, P., Zhou, L., Shi, L.H., Wang, D.W., Hao, R., Ye, J., Yin, W.Y., Li, E.: Carrier dynamics of nanopillar textured ultrathin si film/PEDOT:PSS heterojunction solar cell. IEEE J. Photovolt. 8(3), 757–762 (2018)

    [31] [31] Kiziloglu, V., Selcen, T., Saritas, M.: Sizedependent intermediate band energy levels and absorption of bound states in box shaped quantum dots. In: Proceedings of 2018 International Conference on Photovoltaic Science and Technologies (PVCon). pp. 1–4 (2018)

    [32] [32] Kim, S.H., Man, M.T., Lee, J.W., Park, K.D., Lee, H.S.: Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials 10(8), 1589 (2020)

    Tools

    Get Citation

    Copy Citation Text

    Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Dec. 4, 2021

    Accepted: Apr. 12, 2022

    Published Online: Jan. 22, 2023

    The Author Email: Saghai Hassan Rasooli (h_rasooli@iaut.ac.ir)

    DOI:10.1007/s12200-022-00043-2

    Topics