Acta Photonica Sinica, Volume. 43, Issue 12, 1204001(2014)

De-noising of X-ray Pulsar Signal Based on Wavelet-Fisz Transformation

LIU Xiu-ping1,*... JING Jun-feng1, SUN Hai-feng2 and HAN Li-li3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(16)

    [1] [1] SHEIKH I S. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005.

    [2] [2] ZACHARY T, ROUMMEL F, REBECCA M. This is SPIRAL-TAP: sparse poisson intensity reconstruction algorithms-theory and practice[J]. IEEE Transactions on Image Processing, 2012, 21(36): 1084-1096.

    [3] [3] CHARLES C, RASSON J. Wavelet denoising of Poisson-distributed data and applications[J]. Computational Statistics & Data Analysis, 2003(43): 139-148.

    [4] [4] ANSCOMBE F. The transformation of Poisson, binomial and negative binomial data[J]. Biometrika, 1948, 35: 246-254.

    [5] [5] FISZ M. The limiting distribution of a function of two independent variables and its statistical application[J]. Colloquium Mathematicum, 1955, 3: 138-146.

    [6] [6] GAO Guo-Rong, LIU Yan-Ping, PAN Qiong. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising[J]. Acta Physics Sinica, 2012, 61(13): 139701.

    [7] [7] KOLACZYK E. Bayesian multi-scale models for poisson processes[J]. Journal of the American Statistical Association, 1999, 94(447): 920-933.

    [8] [8] PIOTR F, NASON G. A wavelet-Fisz algorithm for Poisson intensity estimation[J]. Journal of Computational and Graphical Statistics, 2003, 13(3): 621-638.

    [9] [9] PIOTR F. Haar-Fisz methodology for interpretable estimation of large, sparse, time-varying volatility matrices[C]. Hernando: Universite Catholique de Louvain, 2011.

    [10] [10] SU Zhe, XU Lu-ping, WANG Ting. X-ray pulsar-based navigation semi-physical simulation experiment system[J]. Acta Physics Sinica, 2011, 60(11): 119701.

    [12] [12] SHEIKH I, GOLSHAN A, PINES D. Absolute and relative position determination using variable celestial X-ray sources[C]. Advances in the Astronautical Sciences, 2007, 128: 855-874.

    [13] [13] MARKKU M, ALESSANDRO F. Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise[J]. IEEE Transactions on Image Processing, 2013, 22(1): 91-103.

    [14] [14] DONOHO D, JOHSTONE I. Ideal spatial adaption by wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.

    [15] [15] NASON G. Wavelet shrinkage using cross-validation[J]. Journal of the Royal Statistical Society B, 1996, 58: 463-479.

    [16] [16] BARANIUK R. Optimal tree approximation with wavelets[C]. SPIE, 1999, 3813: 206-214.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xiu-ping, JING Jun-feng, SUN Hai-feng, HAN Li-li. De-noising of X-ray Pulsar Signal Based on Wavelet-Fisz Transformation[J]. Acta Photonica Sinica, 2014, 43(12): 1204001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 21, 2014

    Accepted: --

    Published Online: Dec. 26, 2014

    The Author Email: Xiu-ping LIU (liuxiuping8@126.com)

    DOI:10.3788/gzxb20144312.1204001

    Topics