Opto-Electronic Engineering, Volume. 49, Issue 12, 220120(2022)

Research progress in laser welding of Nickel-based alloy sheet

Kaojie Yue... Chen Jia, Yunsong Wang, Fangyong Niu, Guangyi Ma and Dongjiang Wu* |Show fewer author(s)
Author Affiliations
  • Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, China
  • show less
    Figures & Tables(17)
    Microstructure of Ni-Cr alloy welds. (a) Microstructure near the fusion line and in the weld center[19]; (b) The effect of welding velocity on weld dendrites[24]; (c) The effect of laser power on microstructure of welds[25]; (d) Prediction of microstructure[26]
    Microstructure of Ni-Cr-Mo alloy welds. (a) Microstructure of Hastelloy C-276 base metal, heat affected zone and weld center[27-28]; (b) Microstructure of Hastelloy X weld edge[29]; (c) The phase field simulation of columnar grains in weld[30]; (d) EBSD microstructure of base metal and the weld with or without ultrasonic vibration[31]
    The precipitation phase in nickel-based alloy welds. (a) The Laves phase in the Inconel 718 weld[33]; (b) The effect of heat input on the precipitation phase of the Inconel 617 weld[24]; (c) The effect of ultrasonic vibration on the precipitation phase in Hastelloy C-276 welds[31]
    Microhardness of the welded joint with different heat input[23]
    Tensile properties of Ni-Cr-Mo alloy welded joints. (a) Fracture surfaces of Ni-Cr alloy base metal and weld[46]; (b) Tensile strength with different heat input[23]; (c) Fracture surfaces of Ni-Cr-Mo alloy base metal and weld[45]
    High temperature tensile properties of nickel-based alloy. (a) The Laves phase in the weld of Ni-Cr alloy before and after high temperature tensile test[47]; (b) Curves of tensile strength of Ni-Cr-Mo alloy welded joints in different temperatures[43]; (c) Fracture surfaces of Ni-Cr-Mo alloy welded joint in 400 °C[43]
    Fatigue proporty of Ni-Cr-Mo alloy welded joint[48]. (a) S-N curves for base metal and welded joints; (b) Fatigue fracture furface of the weld (cycling at 700 MPa)
    Corrosion properties of Ni-Cr-Mo alloy[27]. (a) Corrosion morphology of the base metal and the weld (in NaCl solution); (b) Polarization curves in NaCl solution; (c) Polarization curves in acid solution; (d) Polarization curves in alkaline solution
    Morphology and microstructure of Ni-Cr-Mo alloy welded joints in laser welding with filler wire. (a) Morphology of the welded joint[57]; (b) Microstructure in edge and center of the reinforcement[57]; (c) Microstructure of the weld center, fusion line and transition fusion zone[57]; (d) Microstructure with the pulse duration of 4 ms[46]; (e) Microstructure with the pulse duration of 8 ms[46]; (f) Microstructure with the pulse frequency of 50 Hz[46]; (g) Microstructure with the pulse frequency of 90 Hz[46]
    Microstructure of the Ni-Cr-Mo alloy weld of laser welding with filler wire. (a) Precipitate chain in the weld[61]; (b) The effect of pulse duration on the segregation of Mo[61]; (c) The effect of pulse frequency on segregation of Mo[61]; (d) Microstructure of the weld without low temperature cooling process[60]; (e) Microstructure of the weld with low temperature cooling process[60]
    Microstructure of Ni-Cr-Mo alloy welded joints of laser welding with filler wire[57]
    Fatigue property of Ni-Cr-Mo alloy welded joints of laser welding with filler wire[64]. (a) Fracture surfaces near welds; (b) The crack that initiated from the weld toe propogates in the direction of thickness
    Cavitation erosion property of Ni-Cr-Mo alloy welded joint [66]. (a) The morphology of the weld after cavitation erosion; (b) Cavitation eroded grain boundary in the weld; (c) Cavitation eroded twin boundary in base metal
    Finite element simulation of welding deformation[69]. (a) Simulation results; (b) Measurement results
    Suppressed welding deformation with in-site high frequency peening[70]. (a), (d) Without peening; (b), (e) Peening after welding; (c), (f) In-site peening in welding
    Welding deformation of Hastelloy C-276 sheet. (a) Effect of linear energy density on deflection[62]; (b) Effect of the relative wire speed on the deflection[62]; (c) Residual deformation without heat sink[71]; (d) Residual deformation with the flow rate of 48 mL/min[71]; (e) Residual deformation with the flow rate of 68 mL/min[71]
    • Table 1. Research status of microstructure of autogenous

      View table
      View in Article

      Table 1. Research status of microstructure of autogenous

      材料微观组织工艺方法研究机构
      GH 3044细化焊缝晶粒,减小二次枝晶臂间距提高焊接速度降低焊接热输入南昌航空大学[23]
      Inconel 617清华大学[24]
      GH 118进一步减小焊缝宽度和晶粒尺寸降低激光功率北京航空制造工程研究所[25]
      Hasetlloy C-276焊缝晶粒显著细化,微观偏析程度降低,脆性相得到抑制脉冲激光焊接快速凝固大连理工大学[28]
      Hasetlloy C-276减小焊缝晶粒及析出相的尺寸,元素分布更加均匀施加随焊超声振动调控微观组织大连理工大学[31]
      Inconel 617有效降低了焊缝元素偏析程度,减小脆性相的析出降低热输入清华大学[24]
      Inconel 718二次枝晶臂间距的预测误差<1.5 μm数值模型预测焊缝几何形貌和微观组织巴斯克大学(西班牙)[26]
      Hatelloy X初生枝晶臂间距大于3 μm时,会有裂纹产生德黑兰大学(伊朗)[29]
      Inconel 718减少焊缝中的Nb偏析和相应Laves相发展使用高能量密度的激光焊接安纳马莱大学(印度)[1]
    Tools

    Get Citation

    Copy Citation Text

    Kaojie Yue, Chen Jia, Yunsong Wang, Fangyong Niu, Guangyi Ma, Dongjiang Wu. Research progress in laser welding of Nickel-based alloy sheet[J]. Opto-Electronic Engineering, 2022, 49(12): 220120

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 9, 2022

    Accepted: --

    Published Online: Jan. 17, 2023

    The Author Email: Wu Dongjiang (djwudut@dlut.edu.cn)

    DOI:10.12086/oee.2022.220120

    Topics