Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0314003(2024)

Femtosecond Laser Direct-Writing Optical Waveguide Amplifiers and Lasers (Invited)

Xiangyu Sun1, Zhi Chen1、*, Yuying Wang2, Daoyuan Chen2, Xiaofeng Liu3, Zhijun Ma1, Lijing Zhong4、**, and Jianrong Qiu2,4
Author Affiliations
  • 1Zhejiang Lab , Hangzhou 311100, Zhejiang , China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 3School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 4Institute of Light+X Science and Technology, College of Information Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang , China
  • show less
    References(121)

    [1] Huang Q D, Chiang K S. Polarization-insensitive ultra-broadband mode filter based on a 3D graphene structure buried in an optical waveguide[J]. Optica, 7, 744-745(2020).

    [2] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 4, 024002(2022).

    [3] Wang M, Qiao L L, Fang Z W et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 43, 1623014(2023).

    [4] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020).

    [5] Long X W, Bai J. Laser action from a femtosecond laser written Yb∶phosphate glass waveguide[J]. Optik, 249, 168308(2022).

    [6] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).

    [7] Zhuang Y, Wang S X, Chen Z X et al. Tailored vortex lasing based on hybrid waveguide-grating architecture in solid-state crystal[J]. Applied Physics Letters, 120, 211101(2022).

    [8] Rönn J, Zhang W W, Autere A et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides[J]. Nature Communications, 10, 432(2019).

    [9] Wang L, Zhang X, Wang Y et al. Femtosecond laser direct writing for eternal data storage: advances and challenges[J]. Chinese Journal of Lasers, 49, 1002504(2022).

    [10] Li M, Li C, Li Y. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. Physics, 52, 542-551(2023).

    [11] Veenhuizen K, McAnany S, Vasudevan R et al. Ferroelectric domain engineering of lithium niobate single crystal confined in glass[J]. MRS Communications, 9, 334-339(2019).

    [12] Li K F, Zhang G, Wang X et al. Tm3+ and Tm3+-Ho3+co-doped tungsten tellurite glass single mode fiber laser[J]. Optics Express, 20, 10115-10121(2012).

    [13] Chen D Y, Xu B B, Fang Z J et al. Broadband optical amplification of PbS quantum-dot-doped glass fibers[J]. Advanced Photonics Research, 3, 2200097(2022).

    [14] Zhao X F, Zhang X X. Research on characteristics of neodymium-doped phosphate waveguide amplifier[J]. Infrared, 28, 33-37(2007).

    [15] Chan J W, Huser T R, Risbud S H et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 82, 2371-2373(2003).

    [16] Li Z Q, Zhang Y X, Cheng C et al. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers[J]. Optics Express, 26, 11321-11330(2018).

    [17] Thorburn F, Lancaster A, McDaniel S et al. 5.9 GHz graphene based Q-switched modelocked mid-infrared monolithic waveguide laser[J]. Optics Express, 25, 26166-26174(2017).

    [18] Osellame R, Della Valle G, Chiodo N et al. Lasing in femtosecond laser written optical waveguides[J]. Applied Physics A, 93, 17-26(2008).

    [19] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).

    [20] Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [21] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser & Photonics Reviews, 14, 1900407(2020).

    [22] Xiong Y J, Wang S X, Chen Z X et al. Femtosecond laser direct writing of compact Tm∶YLF waveguide lasers[J]. Optics & Laser Technology, 167, 109786(2023).

    [23] Wu B, Zhang B, Wang L et al. 3D polarization-dependent waveguide arrays in LiNbO3 crystal produced by femtosecond laser writing[J]. Journal of Lightwave Technology, 38, 3988-3993(2020).

    [24] He R Y, An Q, Vázquez de Aldana J R et al. Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals[J]. Applied Optics, 52, 3713-3718(2013).

    [25] Ren Y Y, Cui Z M, Sun L F et al. Laser emission from low-loss cladding waveguides in Pr: YLF by femtosecond laser helical inscription[J]. Chinese Optics Letters, 20, 122201(2022).

    [26] Li R N, Sun L F, Cai Y J et al. Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd, Gd∶CaF2 waveguides[J]. Chinese Optics Letters, 19, 081301(2021).

    [27] Guan J L, Li C T, Gao R H et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate[J]. Optics & Laser Technology, 168, 109908(2024).

    [28] Liang Y T, Zhou J X, Liu Z X et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching[J]. Nanophotonics, 11, 1033-1040(2022).

    [30] Lin J T, Farajollahi S, Fang Z W et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [31] Zhou J X, Liang Y T, Liu Z X et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 15, 2100030(2021).

    [32] Yin D F, Yu S P, Fang Z W et al. On-chip electro-optically tunable Fabry-Perot cavity laser on erbium doped thin film lithium niobate[J]. Optical Materials Express, 13, 2644-2650(2023).

    [33] Fang Z W, Yao N, Wang M et al. Fabrication of high quality factor lithium niobate double-disk using a femtosecond laser[J]. International Journal of Optomechatronics, 11, 47-54(2017).

    [34] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Optics Letters, 44, 1214-1217(2019).

    [35] Sun X Y, Wang Y Y, Zhong L J et al. High-order mode waveguide amplifier with high mode extinction ratio written in an Er3+-doped phosphate glass[J]. Optics Express, 31, 5812-5819(2023).

    [36] Su B J, Zhong L X, Xu O et al. Multicore fibre gratings inscription technology research developments[J]. Laser & Optoelectronics Progress, 59, 0300004(2022).

    [37] Liu Y Q, Jiang C, Liu Z Y et al. Long-period fiber gratings[J]. Laser & Optoelectronics Progress, 60, 0900001(2023).

    [38] Will M, Nolte S, Chichkov B N et al. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses[J]. Applied Optics, 41, 4360-4364(2002).

    [39] Cerullo G, Osellame R, Taccheo S et al. Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing[J]. Optics Letters, 27, 1938-1940(2002).

    [40] Bhardwaj V R, Simova E, Corkum P B et al. Femtosecond laser-induced refractive index modification in multicomponent glasses[J]. Journal of Applied Physics, 97, 083102(2005).

    [41] Gebremichael W, Dorrer C, Qiao J. Guiding and lasing comparison of Nd: YAG waveguide lasers fabricated by femtosecond laser inscription at 515 and 1030 nm[J]. Journal of Laser Applications, 35, 032014(2023).

    [42] Thomson R R, Bookey H T, Psaila N D et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications[J]. Optics Express, 15, 11691-11697(2007).

    [43] Kowalevicz A M, Sharma V, Ippen E P et al. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator[J]. Optics Letters, 30, 1060-1062(2005).

    [44] Chen Z, Zhong L J, Chen M J et al. Development of femtosecond laser direct-writing optical waveguide devices in flexible PDMS[J]. Laser & Optoelectronics Progress, 60, 1316016(2023).

    [45] Ramsay E, Thomson R R, Psaila N D et al. Laser action from an ultrafast laser inscribed Nd-doped silicate glass waveguide[J]. IEEE Photonics Technology Letters, 22, 742-744(2010).

    [46] Pätzold W M, Demircan A, Morgner U. Low-loss curved waveguides in polymers written with a femtosecond laser[J]. Optics Express, 25, 263-270(2017).

    [47] Pätzold W M, Reinhardt C, Demircan A et al. Cascaded-focus laser writing of low-loss waveguides in polymers[J]. Optics Letters, 41, 1269-1272(2016).

    [48] Thomson R R, Campbell S, Blewett I J et al. Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime[J]. Applied Physics Letters, 88, 111109(2006).

    [49] Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photonics Technology Letters, 16, 1337-1339(2004).

    [50] Bookey H T, Thomson R R, Psaila N D et al. Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate[J]. IEEE Photonics Technology Letters, 19, 892-894(2007).

    [51] MacDonald J R, Thomson R R, Beecher S J et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe[J]. Optics Letters, 35, 4036-4038(2010).

    [52] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing[J]. Optics Express, 19, 17820-17833(2011).

    [53] Brüske D, Suntsov S, Rüter C E et al. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion[J]. Optics Express, 25, 29374-29379(2017).

    [54] Heinrich M, Rademaker K, Nolte S, Osellame R, Cerullo G, Ramponi R. Waveguides in crystalline materials[M]. Femtosecond laser micromachining. Topics in applied physics, 123, 295-313(2012).

    [55] Chen F, de Aldana J R V, Hu A M. Direct femtosecond laser writing of optical waveguides in dielectrics[M]. Laser micro-nano-manufacturing and 3D microprinting. Springer series in materials science, 309, 185-210(2020).

    [56] Ródenas A, Torchia G A, Lifante G et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd∶YAG waveguides: micro-spectroscopy experiments and beam propagation calculations[J]. Applied Physics B, 95, 85-96(2009).

    [57] Li S L, Ye Y K, Shen C Y et al. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters[J]. Optical Engineering, 57, 117103(2018).

    [58] Beecher S J, Thomson R R, Reid D T et al. Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications[J]. Optics Letters, 36, 4548-4550(2011).

    [59] Jia Y C, de Aldana J R V, Romero C et al. Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation[J]. Applied Physics Express, 5, 072701(2012).

    [60] Müller S, Calmano T, Metz P et al. Femtosecond-laser-written diode-pumped Pr∶LiYF4 waveguide laser[J]. Optics Letters, 37, 5223-5225(2012).

    [61] Lin J T, Xu Y X, Fang Z W et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 5, 8072(2015).

    [63] Liu C X, Shen X L, Guo H T et al. Proton-implanted optical waveguides fabricated in Er3+-doped phosphate glasses[J]. Optik, 131, 132-137(2017).

    [64] Wang Y Y, Zhong L J, Chen Z et al. Photonic lattice-like waveguides in glass directly written by femtosecond laser for on-chip mode conversion[J]. Chinese Optics Letters, 20, 031406(2022).

    [65] Yang Y, Zhong L J, Cui Y D et al. Low-loss skimming waveguides with controllable mode leakage for on-chip saturable absorbers[J]. Nanophotonics, 12, 3069-3076(2023).

    [66] Shao L B, Maity S, Zheng L et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate[J]. Physical Review Applied, 12, 014022(2019).

    [67] Pertsch T, Peschel U, Lederer F et al. Discrete diffraction in two-dimensional arrays of coupled waveguides in silica[J]. Optics Letters, 29, 468-470(2004).

    [68] Borca C N, Apostolopoulos V, Gardillou F et al. Buried channel waveguides in Yb-doped KY (WO4)2 crystals fabricated by femtosecond laser irradiation[J]. Applied Surface Science, 253, 8300-8303(2007).

    [69] Wu R B, Zhang J H, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 43, 4116-4119(2018).

    [71] Gao R H, Fu B T, Yao N et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk[J]. Laser & Photonics Reviews, 17, 2200903(2023).

    [72] Mondal K, Chaudhuri P R. Designing high performance Er+3-doped fiber amplifier in triangular-lattice photonic crystal fiber host towards higher gain, low splice loss[J]. Optics & Laser Technology, 43, 1436-1441(2011).

    [73] Wang Z, Fang Z W, Liu Z X et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 46, 380-383(2021).

    [74] Calmano T, Siebenmorgen J, Reichert F et al. Crystalline Pr∶SrAl12O19 waveguide laser in the visible spectral region[J]. Optics Letters, 36, 4620-4622(2011).

    [75] Ren Y Y, Chen F, Vázquez de Aldana J R. Near-infrared lasers and self-frequency-doubling in Nd∶YCOB cladding waveguides[J]. Optics Express, 21, 11562-11567(2013).

    [76] Dong N N, Martínez de Mendivil J, Cantelar E et al. Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides[J]. Applied Physics Letters, 98, 181103(2011).

    [77] Reichert F, Calmano T, Müller S et al. Efficient visible laser operation of Pr, Mg∶SrAl12O19 channel waveguides[J]. Optics Letters, 38, 2698-2701(2013).

    [78] Grivas C, Corbari C, Brambilla G et al. Tunable, continuous-wave Ti: sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses[J]. Optics Letters, 37, 4630-4632(2012).

    [79] Grivas C, Ismaeel R, Corbari C et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti∶sapphire waveguides[J]. Laser & Photonics Reviews, 12, 1800167(2018).

    [80] Ren Y Y, Cheng C, Jia Y C et al. Switchable single-dual-wavelength Yb, Na∶CaF2 waveguide lasers operating in continuous-wave and pulsed regimes[J]. Optical Materials Express, 8, 1633-1641(2018).

    [81] Calmano T, Paschke A G, Müller S et al. Curved Yb∶ YAG waveguide lasers, fabricated by femtosecond laser inscription[J]. Optics Express, 21, 25501-25508(2013).

    [82] Calmano T, Kränkel C, Huber G. Laser oscillation in Yb: YAG waveguide beam-splitters with variable splitting ratio[J]. Optics Letters, 40, 1753-1756(2015).

    [83] Hakobyan S, Wittwer V J, Hasse K et al. Highly efficient Q-switched Yb∶YAG channel waveguide laser with 5.6 W of average output power[J]. Optics Letters, 41, 4715-4718(2016).

    [84] Choi S Y, Calmano T, Rotermund F et al. 2-GHz carbon nanotube mode-locked Yb∶YAG channel waveguide laser[J]. Optics Express, 26, 5140-5145(2018).

    [85] Liu H L, Chen F, Vázquez de Aldana J R et al. Femtosecond-laser inscribed double-cladding waveguides in Nd∶YAG crystal: a promising prototype for integrated lasers[J]. Optics Letters, 38, 3294-3297(2013).

    [86] Bae J E, Park T G, Kifle E et al. Carbon nanotube Q-switched Yb∶KLuW surface channel waveguide lasers[J]. Optics Letters, 45, 216-219(2019).

    [87] Wu P F, He S, Liu H L. Annular waveguide lasers at 1064 nm in Nd∶YAG crystal produced by femtosecond laser inscription[J]. Applied Optics, 57, 5420-5424(2018).

    [88] Sun X L, Sun S, Romero C et al. Femtosecond laser direct writing of depressed cladding waveguides in Nd∶ YAG with “ear-like” structures: fabrication and laser generation[J]. Optics Express, 29, 4296-4307(2021).

    [89] Cheng C, Li Z Q, Dong N N et al. Tin diselenide as a new saturable absorber for generation of laser pulses at 1 μm[J]. Optics Express, 25, 6132-6140(2017).

    [90] Li Z Q, Li R, Pang C et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 27, 8727-8737(2019).

    [91] Ponarina M V, Okhrimchuk A G, Rybin M G et al. Dual-wavelength generation of picosecond pulses with 9.8 GHz repetition rate in Nd∶YAG waveguide laser with graphene[J]. Quantum Electronics, 49, 365-370(2019).

    [92] Liu H L, Vázquez de Aldana J R, Hong M H et al. Femtosecond laser inscribed Y-branch waveguide in Nd∶YAG crystal: fabrication and continuous-wave lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 227-230(2016).

    [93] Jia Y C, Cheng C, Vázquez de Aldana J R et al. Three-dimensional waveguide splitters inscribed in Nd∶YAG by femtosecond laser writing: realization and laser emission[J]. Journal of Lightwave Technology, 34, 1328-1332(2016).

    [94] Jia Y C, Cheng C, Vázquez de Aldana J R et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes[J]. Scientific Reports, 4, 5988(2014).

    [95] Salamu G, Pavel N. Power scaling from buried depressed-cladding waveguides realized in Nd∶YVO4 by femtosecond-laser beam writing[J]. Optics & Laser Technology, 84, 149-154(2016).

    [96] Li Z Q, Cheng C, Dong N N et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 5, 406-410(2017).

    [97] Li Z Q, Li R, Dong N N et al. Gigahertz mode-locked waveguide lasers modulated by PtSe2 saturable absorber[C], AM6A.10(2018).

    [98] Jia Y C, He R Y, Vázquez de Aldana J R et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers[J]. Optics Express, 27, 30941-30951(2019).

    [99] Li Z Q, Pang C, Li R et al. Near-infrared all-optical switching based on nano/micro optical structures in YVO4 matrix: embedded plasmonic nanoparticles and laser-written waveguides[J]. Advanced Photonics Research, 2, 2000064(2021).

    [100] Nie W J, Cheng C, Jia Y C et al. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd∶YAP crystal by direct femtosecond laser writing[J]. Optics Letters, 40, 2437-2440(2015).

    [101] Nie W J, He R Y, Cheng C et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing[J]. Optics Letters, 41, 2169-2172(2016).

    [102] Tan Y, Rodenas A, Chen F et al. 70% slope efficiency from an ultrafast laser-written Nd∶GdVO4 channel waveguide laser[J]. Optics Express, 18, 24994-24999(2010).

    [103] Liu H L, Tan Y, Vázquez de Aldana J R et al. Efficient laser emission from cladding waveguide inscribed in Nd∶GdVO4 crystal by direct femtosecond laser writing[J]. Optics Letters, 39, 4553-4556(2014).

    [104] Zhang C, Dong N N, Yang J et al. Channel waveguide lasers in Nd∶GGG crystals fabricated by femtosecond laser inscription[J]. Optics Express, 19, 12503-12508(2011).

    [105] Ren Y Y, Dong N N, MacDonald J et al. Continuous wave channel waveguide lasers in Nd∶LuVO4 fabricated by direct femtosecond laser writing[J]. Optics Express, 20, 1969-1974(2012).

    [106] Liu H L, An Q, Chen F et al. Continuous-wave lasing at 1.06 μm in femtosecond laser written Nd∶KGW waveguides[J]. Optical Materials, 37, 93-96(2014).

    [107] Li S L, Ye Y K, Wang H L. Cladding waveguide lasers in femtosecond laser written Nd∶KGW waveguides[J]. Optical Materials, 110, 110517(2020).

    [108] Liu H L, Jia Y C, Chen F et al. Continuous wave laser operation in Nd∶GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses[J]. Optical Materials Express, 3, 278-283(2013).

    [109] Gao S Y, Chen Z X, Xiong Y J et al. Nd∶YSAG waveguide-grating vortex laser: design and implementation[J]. Optics Express, 31, 31634-31643(2023).

    [110] Kifle E, Loiko P, Vázquez de Aldana J R et al. Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes[J]. Photonics Research, 6, 971-980(2018).

    [111] Kifle E, Loiko P, Vázquez de Aldana J R et al. Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2[J]. Optics Express, 27, 8745-8755(2019).

    [112] Kifle E, Mateos X, Vázquez de Aldana J R et al. Femtosecond laser-written Tm∶KLu(WO4)2 waveguide lasers[J]. Optics Letters, 42, 1169-1172(2017).

    [113] Kifle E, Loiko P, Romero C et al. Ultrafast laser inscription and ~2 μm laser operation of Y-branch splitters in monoclinic crystals[J]. Journal of Lightwave Technology, 38, 4374-4384(2020).

    [114] Ren Y Y, Brown G, Mary R et al. 7.8-GHz graphene-based 2-μm monolithic waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 395-400(2014).

    [115] Kifle E, Loiko P, Romero C et al. Femtosecond-laser-written Ho: KGd(WO4)2 waveguide laser at 2.1 μm[J]. Optics Letters, 44, 1738-1741(2019).

    [116] Kifle E, Loiko P, Vázquez de Aldana J R et al. Low-loss fs-laser-written surface waveguide lasers at >2 µm in monoclinic Tm3+∶MgWO4[J]. Optics Letters, 45, 4060-4063(2020).

    [117] McDaniel S, Thorburn F, Lancaster A et al. Operation of Ho∶YAG ultrafast laser inscribed waveguide lasers[J]. Applied Optics, 56, 3251-3256(2017).

    [118] MacDonald J R, Beecher S J, Lancaster A et al. Compact Cr∶ZnS channel waveguide laser operating at 2333 nm[J]. Optics Express, 22, 7052-7057(2014).

    [119] McDaniel S A, Lancaster A, Evans J W et al. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide[J]. Optics Express, 24, 3502-3512(2016).

    [120] Zhou Y, Wang Z, Fang Z W et al. On-chip multi-color microdisk laser on Yb3+-doped thin-film lithium niobate[J]. Optics Letters, 46, 5651-5654(2021).

    [121] Zhou J X, Huang T, Fang Z et al. Laser diode-pumped compact hybrid lithium niobate microring laser[J]. Optics Letters, 47, 5599-5601(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xiangyu Sun, Zhi Chen, Yuying Wang, Daoyuan Chen, Xiaofeng Liu, Zhijun Ma, Lijing Zhong, Jianrong Qiu. Femtosecond Laser Direct-Writing Optical Waveguide Amplifiers and Lasers (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0314003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 28, 2023

    Accepted: Nov. 7, 2023

    Published Online: Feb. 22, 2024

    The Author Email: Chen Zhi (zhichen@zhejianglab.edu.cn), Zhong Lijing (zlight.optics@gmail.com)

    DOI:10.3788/LOP232213

    Topics