Advanced Fiber Materials, Volume. 7, Issue 1, 00451(2025)

Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration

Lingfei Xiao1、†, Huifan Liu2、†, Shujuan Wu3、†, Huayi Huang1, Yuanlong Xie1, Renxiong Wei1, Jun Lei1, Yifeng Lei4, Longjian Xue4, Feifei Yan1、*, Zhen Geng5,6、**, and Lin Cai1、***
Author Affiliations
  • 1Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
  • 2Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
  • 3Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430071, China
  • 4The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430071, China
  • 5Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
  • 6National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
  • show less
    References(77)

    [1] [1] Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364.

    [2] [2] Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357:905.

    [3] [3] Black DM, Geiger EJ, Eastell R, Vittinghoff E, Li BH, Ryan DS, Dell RM, Adams AL. Atypical femur fracture risk versus fragility fracture prevention with bisphosphonates. N Engl J Med. 2020;383:743.

    [4] [4] Si L, Winzenberg TM, Jiang Q, Chen M, Palmer AJ. Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos Int. 1929;2015:26.

    [5] [5] Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726.

    [6] [6] Liu S, Zhang LG, Li Z, Gao F, Zhang Q, Bianco A, Liu H, Ge SH, Ma BJ. Materials-mediated in situ physical cues for bone regeneration. Adv Func Mater. 2024;34:2306534.

    [7] [7] Gu J, Zhang Q, Geng M, Wang W, Yang J, Khan AUR, Du H, Sha Z, Zhou X, He C. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater. 2021;6:3254.

    [8] [8] Li J, Xiao L, Gao S, Huang H, Lei Q, Chen Y, Chen Z, Xue L, Yan F, Cai L. Radial sponges facilitate wound healing by promoting cell migration and angiogenesis. Adv Healthcare Mater. 2023;12:2202737.

    [9] [9] Han X, Saiding Q, Cai X, Xiao Y, Wang P, Cai Z, Gong X, Gong W, Zhang X, Cui W. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nanomicro Lett. 2023;15:239.

    [10] [10] Devlin BL, Allenby MC, Ren JY, Pickering E, Klein TJ, Paxton NC, Woodruff MA. Materials design innovations in optimizing cellular behavior on melt electrowritten (MEW) scaffolds. Adv Func Mater. 2024;34:2313092.

    [11] [11] He W, Li C, Zhao S, Li Z, Wu J, Li J, Zhou H, Yang Y, Xu Y, Xia H. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration. Bioact Mater. 2024;34:338.

    [12] [12] Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioact Mater. 2023;25:485.

    [13] [13] Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504.

    [14] [14] Yang G, Li X, He Y, Ma J, Ni G, Zhou S. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci. 2018;81:80.

    [15] [15] Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, stiff, and adhesive periosteum with osteogenic-angiogenic coupling effect for bone regeneration. Small. 2021;17:2006598.

    [16] [16] Kim JI, Kieu TTT, Kook SH, Lee JC. Structurally optimized electrospun scaffold for biomaterial-controlled synergistic enhancement of defective bone healing. Smart Mater Med. 2023;4:603.

    [17] [17] Xu T, Ding Y, Liang Z, Sun H, Zheng F, Zhu Z, Zhao Y, Fong H. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Progr Mater Sci. 2020;112:100656.

    [18] [18] Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31:4313.

    [19] [19] Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater. 2022;4:959.

    [20] [20] Zong D, Zhang X, Yin X, Wang F, Yu J, Zhang S, Ding B. Electrospun fibrous sponges: principle, fabrication, and applications. Adv Fiber Mater. 2022;4:1434.

    [21] [21] Si YF, Shi S, Hu JL. Applications of electrospinning in human health: from detection, protection, regulation to reconstruction. Nano Today. 2023;48: 101723.

    [22] [22] Zhang Y, Zhu Y, Habibovic P, Wang H. Advanced synthetic scaffolds based on 1D inorganic micro-/nanomaterials for bone regeneration. Adv Healthc Mater. 2024;13:2302664.

    [23] [23] Zhao Q, Ni Y, Wei H, Duan Y, Chen J, Xiao Q, Gao J, Yu Y, Cui Y, Ouyang S, Miron RJ, Zhang Y, Wu C. Ion incorporation into bone grafting materials. Periodontol 2000. 2023;94(1):213–30.

    [24] [24] Fitzpatrick V, Martin-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 2021;276: 120995.

    [25] [25] Bohner M, Santoni BLG, Dobelin N. beta-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020;113:23.

    [26] [26] Qi L, Fang X, Yan J, Pan C, Ge W, Wang J, Shen SG, Lin K, Zhang L. Magnesium-containing bioceramics stimulate exosomal miR-196a-5p secretion to promote senescent osteogenesis through targeting Hoxa7/MAPK signaling axis. Bioact Mater. 2024;33:14.

    [27] [27] Muller WEG, Ackermann M, Al-Nawas B, Righesso LAR, Munoz-Espi R, Tolba E, Neufurth M, Schroder HC, Wang X. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate. Acta Biomater. 2020;118:233.

    [28] [28] El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1.

    [29] [29] Xu Y, Xu C, He L, Zhou J, Chen T, Ouyang L, Guo X, Qu Y, Luo Z, Duan D. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact Mater. 2022;16:271.

    [30] [30] Zhang XD, Wang T, Zhang ZY, Liu HQ, Li LF, Wang AC, Ouyang J, Xie T, Zhang LQ, Xue JJ, Tao W. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Mater Today. 2023;68:177.

    [31] [31] Wu HB, Shi S, Zhou HQ, Zhi CW, Meng S, Io WF, Ming Y, Wang YC, Lei LQ, Fei B, Hao JH, Hu JL. Stem cell self-triggered regulation and differentiation on polyvinylidene fluoride electrospun nanofibers. Adv Func Mater. 2024;34:2309270.

    [32] [32] Liu Z, Cai M, Zhang X, Yu X, Wang S, Wan X, Wang ZL, Li L. Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv Mater. 2021;33:2106317.

    [33] [33] Geng Z, Ji L, Li Z, Wang J, He H, Cui Z, Yang X, Liu C. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioact Mater. 2021;6:905.

    [34] [34] Zhang W, Cao H, Zhang X, Li G, Chang Q, Zhao J, Qiao Y, Ding X, Yang G, Liu X, Jiang X. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale. 2016;8:5291.

    [35] [35] Chen Y, Zheng Z, Zhou R, Zhang H, Chen C, Xiong Z, Liu K, Wang X. Developing a strontium-releasing graphene oxide-/collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Appl Mater Interfaces. 2019;11:15986.

    [36] [36] Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, Zhou Z, Lu WW. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 2009;23:165.

    [37] [37] Zeng J, Guo J, Sun Z, Deng F, Ning C, Xie Y. Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: In vitro and in vivo studies. Bioact Mater. 2020;5:435.

    [38] [38] Ma F, Zhang Y, Hu L, Peng Y, Deng Y, He W, Ge Y, Tang B. Strontium laminarin polysaccharide modulates osteogenesis-angiogenesis for bone regeneration. Int J Biol Macromol. 2021;181:452.

    [39] [39] Zhuang Y, Liu AQ, Jiang SJ, Liaqat U, Lin KL, Sun WJ, Yuan CY. Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic. Mater Des. 2023;234:112313.

    [40] [40] Cheng D, Ding R, Jin X, Lu Y, Bao W, Zhao Y, Chen S, Shen C, Yang Q, Wang Y. Strontium ion-functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration. ACS Appl Mater Interfaces. 2023;15:19951.

    [41] [41] Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioactive Mater. 2024;31:18.

    [42] [42] Zhou X, Qian Y, Chen L, Li T, Sun X, Ma X, Wang J, He C. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano. 2023;17:5140.

    [43] [43] Yu XG, Jiang SJ, Li DJ, Shen SGF, Wang XD, Lin KL. Osteoimmunomodulatory bioinks for 3D bioprinting achieve complete regeneration of critical-sized bone defects. Compos Part B-Eng. 2024;273:111256.

    [44] [44] Cui J, Yu X, Yu B, Yang X, Fu Z, Wan J, Zhu M, Wang X, Lin K. Coaxially fabricated dual-drug loading electrospinning fibrous mat with programmed releasing behavior to boost vascularized bone regeneration. Adv Healthc Mater. 2022;11:2200571.

    [45] [45] Fu Z, Li D, Cui J, Xu H, Yuan C, Wang P, Zhao B, Lin K. Promoting bone regeneration via bioactive calcium silicate nanowires reinforced poly (ε-caprolactone) electrospun fibrous membranes. Mater Des. 2023;226: 111671.

    [46] [46] Ding YW, Zhang XW, Mi CH, Qi XY, Zhou J, Wei DX. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater Med. 2023;4:59.

    [47] [47] Xia W, Zhang D, Chang J. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology. 2007;18: 135601.

    [48] [48] Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim IS. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J Biomed Mater Res A. 2011;97:272.

    [49] [49] Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, Zhou JG, Lelkes PI, Gogotsi Y. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 2012;33:5067.

    [50] [50] Cai Q, Xu QQ, Feng QF, Cao XY, Yang XP, Deng XL. Biomineralization of electrospun poly(L-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous CO bubbling. Appl Surf Sci. 2011;257:10109.

    [51] [51] Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, Huang W. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7:800.

    [52] [52] Frasnelli M, Cristofaro F, Sglavo VM, Dire S, Callone E, Ceccato R, Bruni G, Cornaglia AI, Visai L. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2017;71:653.

    [53] [53] Liu DH, Nie W, Li DJ, Wang WZ, Zheng LX, Zhang JT, Zhang JL, Peng C, Mo XM, He CL. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J. 2019;362:269.

    [54] [54] Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: emerging concepts. Periodontol 2000. 2023;94(1):9–26.

    [55] [55] Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol. 2023;19:78.

    [56] [56] Pattnaik A, Sanket AS, Pradhan S, Sahoo R, Das S, Pany S, Douglas TEL, Dandela R, Liu Q, Rajadas J, Pati S, De Smedt SC, Braeckmans K, Samal SK. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials. 2023;296: 122078.

    [57] [57] Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun fiber-based strategies for controlling early innate immune cell responses: Towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomater. 2023;163:228.

    [58] [58] Filipowska J, Tomaszewski KA, Niedzwiedzki L, Walocha JA, Niedzwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20:291.

    [59] [59] Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Res. 2013;1:311.

    [60] [60] Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH. Blood flow controls bone vascular function and osteogenesis. Nat Commun. 2016;7:13601.

    [61] [61] Sharma D, Sharma A, Hu L, Chen TA, Voon S, Bayless KJ, Goldman J, Walsh AJ, Zhao F. Perfusability and immunogenicity of implantable pre-vascularized tissues recapitulating features of native capillary network. Bioact Mater. 2023;30:184.

    [62] [62] Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells. 2021;10:1749.

    [63] [63] Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148.

    [64] [64] Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012;8:358.

    [65] [65] Zhang S, Xie Y, Yan F, Zhang Y, Yang Z, Chen Z, Zhao Y, Huang Z, Cai L, Deng Z. Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis. Autophagy. 2022;18:2229.

    [66] [66] Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008;105:686.

    [67] [67] Zhang Y, Hao Z, Wang P, Xia Y, Wu J, Xia D, Fang S, Xu S. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 2019;52:12570.

    [68] [68] Guo X, Wei S, Lu M, Shao Z, Lu J, Xia L, Lin K, Zou D. Dose-dependent effects of strontium ranelate on ovariectomy rat bone marrow mesenchymal stem cells and human umbilical vein endothelial cells. Int J Biol Sci. 2016;12:1511.

    [69] [69] Lin K, Xia L, Li H, Jiang X, Pan H, Xu Y, Lu WW, Zhang Z, Chang J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34:10028.

    [70] [70] Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, Chen X. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018;178:36.

    [71] [71] Yuan Y, Zhang Z, Mo F, Yang C, Jiao Y, Wang E, Zhang Y, Lin P, Hu C, Fu W, Chang J, Wang L. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis. Bioact Mater. 2023;26:264.

    [72] [72] Li S, Zhang L, Liu C, Kim J, Su K, Chen T, Zhao L, Lu X, Zhang H, Cui Y, Cui X, Yuan F, Pan H. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater. 2023;23:101.

    [73] [73] Yuan X, Wu T, Lu T, Ye J. Effects of zinc and strontium doping on in vitro osteogenesis and angiogenesis of calcium silicate/calcium phosphate cement. ACS Biomater Sci Eng. 2023;9:5761.

    [74] [74] Ren Z, Ma S, Jin L, Liu Z, Liu D, Zhang X, Cai Q, Yang X. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication. 2017;9: 025036.

    [75] [75] Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials. 2017;141:74.

    [76] [76] Pors NS. The biological role of strontium. Bone. 2004;35:583.

    [77] [77] Jia B, Yang H, Zhang Z, Qu X, Jia X, Wu Q, Han Y, Zheng Y, Dai K. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioact Mater. 2021;6:1588.

    Tools

    Get Citation

    Copy Citation Text

    Lingfei Xiao, Huifan Liu, Shujuan Wu, Huayi Huang, Yuanlong Xie, Renxiong Wei, Jun Lei, Yifeng Lei, Longjian Xue, Feifei Yan, Zhen Geng, Lin Cai. Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration[J]. Advanced Fiber Materials, 2025, 7(1): 00451

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 24, 2024

    Accepted: Jun. 5, 2024

    Published Online: Mar. 14, 2025

    The Author Email: Yan Feifei (yanfeifei0120@whu.edu.cn), Geng Zhen (nanboshan1987@163.com), Cai Lin (orthopedics@whu.edu.cn)

    DOI:10.1007/s42765-024-00451-3

    Topics