Optics and Precision Engineering, Volume. 30, Issue 14, 1657(2022)

Multi-graph regularized multi-kernel nonnegative matrix factorization for hyperspectral image unmixing

Jing LIU1、*, Kangxin LI1, You ZHANG1, and Yi LIU2
Author Affiliations
  • 1School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an702, China
  • 2School of Electronic Engineering, Xidian University, Xi'an710071, China
  • show less
    References(23)

    [1] [1] 1黄鸿, 唐玉枭, 段宇乐. 半监督多图嵌入的高光谱影像特征提取[J]. 光学 精密工程, 2020, 28(2): 443-456.HUANGH, TANGY X, DUANY L. Feature extraction of hyperspectral image with semi-supervised multi-graph embedding[J]. Opt. Precision Eng., 2020, 28(2): 443-456.(in Chinese)

    [2] [2] 2黄鸿, 张臻, 李政英. 面向高光谱影像分类的深度流形重构置信网络[J]. 光学 精密工程, 2021, 29(8): 1985-1998. doi: 10.37188/OPE.20212908.1985HUANGH, ZHANGZ, LIZ Y. Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J]. Opt. Precision Eng., 2021, 29(8): 1985-1998.(in Chinese). doi: 10.37188/OPE.20212908.1985

    [3] [3] 3张少磊, 付光远, 汪洪桥, 等. 基于向量总变差约束局部光谱解混的高光谱图像超分辨[J]. 光学 精密工程, 2019, 27(12): 2683-2692. doi: 10.3788/ope.20192712.2683ZHANGS L, FUG Y, WANGH Q, et al. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Opt. Precision Eng., 2019, 27(12): 2683-2692.(in Chinese). doi: 10.3788/ope.20192712.2683

    [4] IBARROLA-ULZURRUN E, DRUMETZ L, MARCELLO J et al. Hyperspectral classification through unmixing abundance maps addressing spectral variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 4775-4788(2019).

    [5] [5] 5吴银花, 王鹏冲, 吴慎将, 等. 针对高光谱端元提取的空谱联合预处理方法[J]. 液晶与显示, 2020, 35(9): 955-964. doi: 10.37188/YJYXS20203509.0955WUY H, WANGP C, WUS J, et al. Spatial-spectral combined preprocessing method for hyperspectral endmember extraction[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(9): 955-964.(in Chinese). doi: 10.37188/YJYXS20203509.0955

    [6] ZHANG S Q, ZHANG G R, LI F et al. Spectral-spatial hyperspectral unmixing using nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).

    [7] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).

    [8] CHAN T H, CHI C Y, HUANG Y M et al. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[J]. IEEE Transactions on Signal Processing, 57, 4418-4432(2009).

    [9] NASCIMENTO J M P, DIAS J M B. Does independent component analysis play arole in unmixing hyperspectral data?[J]. IEEE Transactions on Geoscience and Remote Scensing, 43, 175-187(2005).

    [10] [10] 10石悦, 王宏琦, 郭新毅. 基于丰度分布约束的NMF端元生成方法[J]. 中国科学院大学学报, 2020, 37(4): 547-552. doi: 10.7523/j.issn.2095-6134.2020.04.015SHIY, WANGH Q, GUOX Y. NMF endmember generation method based on abundance distribution constraint[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(4): 547-552.(in Chinese). doi: 10.7523/j.issn.2095-6134.2020.04.015

    [11] YANG S Y, ZHANG X T, YAO Y G et al. Geometric nonnegative matrix factorization (GNMF) for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2696-2703(2015).

    [12] SHU Z Q, WU X J, FAN H H et al. Parameter-less Auto-weighted multiple graph regularized Nonnegative Matrix Factorization for data representation[J]. Knowledge-Based Systems, 131, 105-112(2017).

    [13] GAO L R, WANG Z C, ZHUANG L N et al. Using low-rank representation of abundance maps and nonnegative tensor factorization for hyperspectral nonlinear unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).

    [14] PENG J T, ZHOU Y C, SUN W W et al. Self-paced nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1501-1515(2021).

    [15] LU X Q, WU H, YUAN Y. Double constrained NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 2746-2758(2014).

    [16] PILARIO K E S, CAO Y, SHAFIEE M. A kernel design approach to improve kernel subspace identification[J]. IEEE Transactions on Industrial Electronics, 68, 6171-6180(2021).

    [17] LIU J, ZHANG Y, LIU Y et al. Hyperspectral images unmixing based on abundance constrained multi-layer KNMF[J]. IEEE Access, 91080-91090(9).

    [18] YAO J Y, WANG H Q, FU G Y et al. Hyperspectral image unmixing method based on multiple kernel graph non-negative matrix factorization[J]. Journal of Physics: Conference Series, 1693(2020).

    [19] [19] 19杨斌, 王斌, 吴宗敏. 基于双线性混合模型的高光谱图像非线性光谱解混[J]. 红外与毫米波学报, 2018, 37(5): 631-641. doi: 10.3390/rs10050801YANGB, WANGB, WUZ M. Nonlinear spectral unmixing for hyperspectral imagery based on bilinear mixture models[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 631-641.(in Chinese). doi: 10.3390/rs10050801

    [20] QIN K, GE F Y, ZHAO Y J et al. Hapke data augmentation for deep learning-based hyperspectral data analysis with limited samples[J]. IEEE Geoscience and Remote Sensing Letters, 18, 886-890(2021).

    [21] SEUNG D, LEE L. Algorithms for Non-Negative Matrix Factorization[J]. Advances in Neural Information Processing Systems, 13, 556-562(2001).

    [22] CAI D, HE X F, HAN J W et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1548-1560(2011).

    [23] MAURI G R, LORENA L A N. Improving a Lagrangian decomposition for the unconstrained binary quadratic programming problem[J]. Computers & Operations Research, 39, 1577-1581(2012).

    Tools

    Get Citation

    Copy Citation Text

    Jing LIU, Kangxin LI, You ZHANG, Yi LIU. Multi-graph regularized multi-kernel nonnegative matrix factorization for hyperspectral image unmixing[J]. Optics and Precision Engineering, 2022, 30(14): 1657

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Apr. 22, 2022

    Accepted: --

    Published Online: Sep. 6, 2022

    The Author Email: Jing LIU (zyhalj1975@163.com)

    DOI:10.37188/OPE.20223014.1657

    Topics