High Power Laser Science and Engineering, Volume. 9, Issue 1, 010000e9(2021)

Emission mechanism for the silicon He-α lines in a photoionization experiment

Bo Han1,2, Feilu Wang3,4,5、*, David Salzmann3, Jiayong Zhong1,6, and Gang Zhao3,4
Author Affiliations
  • 1Department of Astronomy, Beijing Normal University, Beijing100875, China
  • 2College of Physics and Electronic Engineering, Qilu Normal University, Jinan250200, China
  • 3CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing100101, China
  • 4School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing101408, China
  • 5Graduate School of China Academy of Engineering Physics, Beijing100196, China
  • 6Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, China
  • show less
    Figures & Tables(7)
    Black line: the experimental spectrum of Fujioka et al.[13" target="_self" style="display: inline;">13]. Blue line: the theoretical result of an optically thin model. f, Li, i and r denote the position of the forbidden line, satellite lines, the intercombination line and the resonance line, respectively.
    Comparison of the collisional excitation cross-section with the results of Refs. [26–29]. The transitions include 1s2s 3S 1s2p 1P1, 1s2s 3S 1s2s 1S1, 1s2p 3P 1s2p 1P1 and 1s2s 1S 1s2p 1P1 of He-like Si.
    Contributions of atomic processes under the conditions of the Fujioka et al. photoionization experiment for five selected levels. The atomic processes are listed on the x-axis. The blue processes are related to the radiation field, the dark-gray processes are controlled by collisions and the green processes are autoionization and dielectronic capture. Solid black lines represent the populating contributions for the levels, and the red dashed lines represent the depopulating contributions for the levels. The contribution friction of each process is also labeled.
    Evolution of fractions of charge states from C-like ion to bare nuclei in the time-dependent model with a Gaussian radiation pulse (red line). The radiation pulse is adapted as a Gaussian distribution with FWHM of 160 ps and =80 ps[13" target="_self" style="display: inline;">13,16" target="_self" style="display: inline;">16,20" target="_self" style="display: inline;">20].
    Evolution of process contributions to 1s2p 1P1. Upper panel: populating contributions. Lower panel: depopulating contributions. The radiation pulse is also plotted.
    Black line: the experimental spectrum of Fujioka et al.[13" target="_self" style="display: inline;">13]. Green line: theoretical spectrum of time-dependent model. Red line: theoretical spectrum of optically thick model.
    • Table 1. Transition energies and Einstein A coefficients of some intense silicon lines between 1820 eV and 1865 eV. The resonance, intercombination and forbidden lines are marked as , and , respectively.

      View table
      View in Article

      Table 1. Transition energies and Einstein A coefficients of some intense silicon lines between 1820 eV and 1865 eV. The resonance, intercombination and forbidden lines are marked as , and , respectively.

      IonTransitionThis studyPalmeri et al.
      UpperLowerEnergy (eV)A (s−1)Energy (eV)A (s−1)
      He-like$\rm 1s2p$${}^1{\rm P}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1864.8115 ($R/w$)3.87×10131864.9798044.07×1013
      Li-like$\rm 1s2p(1P)3d$$\rm {}^2{F}_{5/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{3/2}$1863.7742952.50×1013
      Li-like$\rm 1s2p(1P)3d$$\rm {}^2{F}_{7/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{5/2}$1863.3261312.90×1013
      Li-like$\rm 1s2p(1P)3d$$\rm {}^2{D}_{5/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{5/2}$1861.8431253.14×1013
      Li-like$\rm 1s2p(1P)3d$$\rm {}^2{D}_{3/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{3/2}$1861.8151673.29×1013
      Li-like$\rm 1s2p(1P)3s$$\rm {}^2{P}_{1/2}$$\rm 1{s}^23s$$\rm {}^2{S}_{1/2}$1861.2841142.73×1013
      Li-like$\rm 1s2p(1P)3s$$\rm {}^2{P}_{3/2}$$\rm 1{s}^23s$$\rm {}^2{S}_{1/2}$1861.1164761.54×1013
      Li-like$\rm 1s2p(1P)3p$$\rm {}^2{P}_{3/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1860.7812913.24×1013
      Li-like$\rm 1s2p(1P)3p$$\rm {}^2{D}_{3/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{1/2}$1860.6416662.88×1013
      Li-like$\rm 1s2p(1P)3p$$\rm {}^2{P}_{1/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{1/2}$1860.6416662.59×1013
      Li-like$\rm 1s2p(1P)3p$$\rm {}^2{D}_{5/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1860.3345652.88×1013
      Li-like$\rm 1s(2S)2{p}^2$$\rm {}^2{S}_{1/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1856.0735551.21×10131856.7128521.27×1013
      Li-like$\rm 1s(2S)2s2p(1P)$$\rm {}^2{P}_{3/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1854.0473957.36×10121854.5465852.82×1012
      Li-like$\rm 1s(2S)2s2p(1P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1853.8810584.89×10121854.2137624.96×1012
      He-like$\rm 1s2p$$\rm {}^3{P}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1853.8562 ($I/x$)3.77×107
      He-like$\rm 1s2p$$\rm {}^3{P}_2$$\rm 1{s}^2$$\rm {}^1{S}_0$1852.9801 ($I/y$)1.36×1011
      Li-like$\rm 1s(2S)2s2p(3P)$$\rm {}^2{P}_{3/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1844.8057113.26×10131845.6570413.50×1013
      Li-like$\rm 1s(2S)2s2p(3P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1844.2294493.06×10131845.1077063.29×1013
      Li-like$\rm 1s(2S)2{p}^2(3P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{3/2}$1842.8588454.67×10131842.4480611.76×1013
      Li-like$\rm 1s(2S)2{p}^2(1D)$$\rm {}^2{D}_{5/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{1/2}$1840.2329891.81×10131840.4788451.85×1013
      Li-like$\rm 1s(2S)2{p}^2(1D)$$\rm {}^2{D}_{3/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{3/2}$1839.1138081.75×10131839.5776941.82×1013
      He-like$\rm 1s2s$$\rm {}^3{S}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1838.2023 ($F/z$)3.27×105
      Be-like$\rm 1s2{p}^3$$\rm {}^1{P}_1$$\rm 1{s}^22{p}^2$$\rm {}^1{D}_2$1831.2363552.61×10131831.1281722.81×1013
      Be-like$\rm 1s2{s}^22p$$\rm {}^1{P}_1$$\rm 1{s}^22{s}^2$$\rm {}^1{S}_0$1828.3468623.21×10131828.1851043.48×1013
      Be-like$\rm 1s(2S)2s2{p}^2(2S)$$\rm {}^1{S}_0$$\rm 1{s}^22s2p$$\rm {}^1{P}_1$1827.1074511.79×10131827.9964231.64×1013
      Be-like$\rm 1s(2S)2s2{p}^2(2P)$$\rm {}^1{P}_1$$\rm 1{s}^22s2p$$\rm {}^1{P}_1$1827.1074514.91×10131827.4844855.32×1013
      Be-like$\rm 1s(2S)2s2{p}^2(4P)$$\rm {}^3{P}_2$$\rm 1{s}^22{p}^2$$\rm {}^3{P}_2$1823.6406584.65×10131823.4260964.25×1013
      Be-like$\rm 1s(2S)2s2{p}^2(2D)$$\rm {}^3{D}_2$$\rm 1{s}^22 ssp$$\rm {}^3{P}_1$1823.5870132.40×10131823.0775412.18×1013
      Be-like$\rm 1s(2S)2s2{p}^2(2D)$$\rm {}^3{D}_1$$\rm 1{s}^22 ssp$$\rm {}^3{P}_0$1823.5333712.28×10131823.3188342.53×1013
    Tools

    Get Citation

    Copy Citation Text

    Bo Han, Feilu Wang, David Salzmann, Jiayong Zhong, Gang Zhao. Emission mechanism for the silicon He-α lines in a photoionization experiment[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e9

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 22, 2020

    Accepted: Nov. 26, 2020

    Published Online: Mar. 4, 2021

    The Author Email: Feilu Wang (wfl@bao.ac.cn)

    DOI:10.1017/hpl.2020.49

    Topics