Journal of Synthetic Crystals, Volume. 49, Issue 8, 1397(2020)

Research Progress of Quasi-phase Matching Materials for Long-wave IR Generation

WANG Jian... CHENG Hongjuan* and GAO Yanzhao |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(42)

    [1] [1] Troccoli M, Lyakh A, Fan J, et al. Long-wave IR quantum cascade lasers for emission in the λ=8-12 μm spectral region[J]. Optical Materials Express, 2013, 3(9): 1546-1560.

    [2] [2] Godard A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128.

    [4] [4] Yao B, Li G, Zhu G, et al. Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators[J]. Chinese Physics B, 2012, 21(3): 034213.

    [5] [5] Wang J, Yu H, Wu Y, et al. Recent developments in functional crystals in China[J]. Engineering, 2015, 1(2): 192-210.

    [6] [6] Wang S, Dai S, Jia N, et al. Tunable 7-12 μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal[J]. Optics Letters, 2017, 42(11): 2098-2101.

    [7] [7] Petrov V. Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources[J]. Optical Materials, 2012, 34(3): 536-554.

    [10] [10] Kuo P S. Thick film, orientation-patterned gallium arsenide for nonlinear optical frequency conversion[D]. California: Stanford University, 2008: 36-39.

    [11] [11] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127: 1918-1939.

    [12] [12] David S H, Martin M F. Quasi-phasematching[J]. Comptes Rendus Physique, 2007, 8: 180-198.

    [15] [15] Schunemann P G, Magarrell D J, Mohnkern L. Growth of engineered QPM structures in orientation-patterned gallium arsenide and gallium phosphide[J]. Nonlinear frequency generation and conversion: materials and devices XVIII, 2019, 10902.

    [16] [16] Roux S, Cerutti L, Tournie E, et al. Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion[J]. Optical Materials Express, 2017, 7(8): 3011-3016.

    [17] [17] Christopher G B, Steven R B, Jennifer K H, et al. Frequency conversion in free-standing periodically oriented gallium nitride[J]. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 2016, 9731: 97310E-1.

    [18] [18] Schunemann P G, Zawilski K T, Pomeranz L A, et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. Journal of the Optical Society of America B, 2016, 33(11): D36-D43.

    [19] [19] Gordon L, Woods G L, Eckardt R C, et al. Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser[J]. Electronics Letters, 1993, 29(22): 1942-1944.

    [20] [20] Wu Y, Feigelson R S, Route R K, et al. Improved GaAs wafer bonding process for quasi-phase-matched (QPM) second harmonic generation (SHG) [J]. Conference on Lasers & Electro-optics, 1997: 451-452.

    [21] [21] Wu Y, Hu G. Healing kinetics of interfacial voids in GaAs wafer bonding[J]. Applied Physics Letters, 2002, 81(8): 1429-1431.

    [22] [22] Lallier E, Becouarn L, Brevignon M, et al. Infrared difference frequency generation with quasi-phase-matched GaAs[J]. Electronics Letters, 1998, 34: 1609-1611.

    [23] [23] Zheng D, Gordon LA, Wu Y, et al. 16 μm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs[J]. Optics Letters, 1998, 23: 1010-1012.

    [25] [25] Mason P D, McBrearty E J, Orchard D A, et al. Glass-bonded quasi-phase matched gallium arsenide crystals for non-linear wavelength conversion into the mid-infrared[J]. Proceedings of SPIE, 2004, 5621: 83-92.

    [26] [26] Mason P D, McBrearty E J, Webber P J, et al. Improved multi-layer glass-bonded QPM GaAs crystals for non-linear wavelength conversion into the mid-infrared[J]. Proceedings of SPIE, 2005, 5990: 43-52.

    [27] [27] Perrett B J, Mason P D, Webber P A, et al. Optical parametric amplification of mid-infrared radiation usingmulti-layer glass-bonded QPM GaAs crystals[J]. Proceedings of SPIE, 2007, 6455: 0A.

    [28] [28] Kawaji M, Imura K, Yaguchi T, et al. Fabrication of quasi-phase-matched devices by use of the room-temperature-bonding technique[J]. Advanced Solid-State Photonics, 2009: TuB24.

    [29] [29] Kubota T, Atarashi H, Shojif I. Fabrication of quasi-phase-matching stacks of GaAs plates using a new technique: room temperature bonding[J].Optical Materials Express, 2017, 7(3): 932-938.

    [30] [30] Takase H,Atarashi H, Kaga T. Fabrication of a quasi-phase-matching stack of 53 GaAs plates for high-power mid-infrared wavelength conversion by use of room-temperature bonding[J]. SPIE LASE, 2019, 10902: 0I.

    [31] [31] Skauli T, Kuo P S, Vodopyanov K L, et al. Improved dispersion relations for GaAs and applications to nonlinear optics[J]. Journal of Applied Physics, 2003, 94(10): 6447-6455.

    [32] [32] Ebert C B, Eyres L A, Fejer M M, et al. MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy[J]. Journal of Crystal Growth, 1999, 201: 187-193.

    [33] [33] Yu X, Scaccabarozzi L, Lin A, et al. Growth of GaAs with orientation-patterned structures for nonlinear optics[J]. Journal of Crystal Growth, 2007, 301: 163-167.

    [34] [34] Tassev V L, Vangala S R. Thick hydride vapor phase heteroepitaxy: a novel approach to growth of nonlinear optical materials[J]. Crystals, 2019, 393 (9): 1-46.

    [35] [35] Yoo S, Bhat R, Caneau C, et al. Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding[J]. Applied Physics Letters, 1995, 66: 3410-3412.

    [36] [36] Li J, Fenner D B, Termkoa K, et al. Wafer-fused orientation-patterned GaAs[J]. Proceedings of SPIE, 2008, 6875: 0H.

    [37] [37] Lynch C, Bliss D F, Snure M, e al. Thick orientation-patterned GaAs grown by low-pressure HVPE on fusion-bonded templates[J]. Journal of Crystal Growth, 2012, 353(1): 152-157.

    [38] [38] Grüter K, Deschler M, Jürgensen H, et al. Deposition of high quality GaAs films at fast rates in the LP-CVD system[J]. Journal of Crystal Growth, 1989, 94(3): 607-612.

    [39] [39] Vodopyanov K L, Levi O, Kuo P S, et al. Optical parametric oscillation in quasi-phase-matched GaAs[J]. Optics Letters, 2004, 29(16): 1912-1914.

    [40] [40] Peterson R D, Whelan D, Bliss D, et al. Improved material quality and OPO performance in orientation-patterned GaAs[J]. Proceedings of SPIE, 2009, 7197: 09.

    [41] [41] Feaver R K, Peterson R D, Powers P E. Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 μm Tm, Ho: YLF laser[J]. Optics Express, 2013, 21(13): 16104-16110.

    [42] [42] Hildenbrand A, Kieleck C, Lallier E, et al. Compact efficient mid-infrared laser source: OP-GaAs OPO pumped by Ho3+∶YAG laser[J]. Proceedings of SPIE, 2011, 8187: 15.

    [43] [43] Schunemann P G, Pomeranz L A, Setzler S D, et al. CW mid-IR OPO based on OP-GaAs[J]. Conference on Lasers and Electro-Optics: Europe & International Quantum Electronics Conference, 2013: JSII-2-3.

    [44] [44] Creeden D, Pomeranz L A, Jones C. High power mid-infrared laser sources[J]. Conference on Lasers & Electro-optics, 2016: ATh3K.1.

    [45] [45] Kane D, Hopkins J M, Dunn M H, et al. Tm∶YAP pumped intracavity pulsed OPO based on orientation-patterned gallium arsenide (OP-GaAs)[J]. Advanced Solid State Lasers Conference, 2015: ATh2A.20.

    [46] [46] Fu Q, Xu L, Liang S J, et al. High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator[J]. Optics Letters, 2019, 44(11): 2744-2747.

    [47] [47] Fu Q, Xu L, Liang S J, et al. High-average-power picosecond mid-infrared OP-GaAs OPO[J]. Optics Express, 2020, 28(4): 5741-5748.

    [48] [48] Wueppen J, Nyga S, Jungbluth B, et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength[J]. Optics Letters, 2016, 41(18): 4225-4228.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jian, CHENG Hongjuan, GAO Yanzhao. Research Progress of Quasi-phase Matching Materials for Long-wave IR Generation[J]. Journal of Synthetic Crystals, 2020, 49(8): 1397

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Nov. 11, 2020

    The Author Email: Hongjuan CHENG (xiemn08@126.com)

    DOI:

    CSTR:32186.14.

    Topics