Acta Optica Sinica, Volume. 41, Issue 8, 0823001(2021)

On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces

Kun Liao, Tianyi Gan, Xiaoyong Hu*, and Qihuang Gong
Author Affiliations
  • State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • show less
    References(61)

    [1] Chen H T, Taylor A J, Yu N. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [3] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [5] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [7] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [8] Chong S, Hui L, Shining Z. Transformation optics based on metasurfaces[J]. Science Bulletin, 64, 793-796(2019).

    [11] High A A, Devlin R C, Dibos A et al. Visible-frequency hyperbolic metasurface[J]. Nature, 522, 192-196(2015).

    [12] Bliokh K Y. Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [13] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [14] Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013).

    [15] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 7, 506-538(2013).

    [16] Koos C, Vorreau P, Vallaitis T et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 3, 216-219(2009).

    [17] Willner A E, Khaleghi S, Chitgarha M R et al. All-optical signal processing[J]. Journal of Lightwave Technology, 32, 660-680(2014).

    [18] Li M. Pernice W H P, Xiong C, et al. Harnessing optical forces in integrated photonic circuits[J]. Nature, 456, 480-484(2008).

    [19] Nagarajan R, Joyner C H, Schneider R P et al. Large-scale photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 50-65(2005).

    [21] Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction[J]. Light: Science & Applications, 1, e1(2012).

    [22] Foster M A, Turner A C, Sharping J E et al. Broad-band optical parametric gain on a silicon photonic chip[J]. Nature, 441, 960-963(2006).

    [23] Chen S, Liu W, Li Z et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, e1805912(2020).

    [24] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [25] Cheben P, Halir R, Schmid J H et al. Subwavelength integrated photonics[J]. Nature, 560, 565-572(2018).

    [26] Sun L, Zhang Y, He Y et al. Subwavelength structured silicon waveguides and photonic devices[J]. Nanophotonics, 9, 1321-1340(2020).

    [27] Zhao C L, Zhang J S. Plasmonic demultiplexer and guiding[J]. ACS Nano, 4, 6433-6438(2010).

    [29] Xie Y B, Wang W Q, Chen H Y et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications, 5, 5553(2014).

    [30] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Advanced Optical Materials, 6, 1701201(2018).

    [31] Xu Y D, Fu Y Y, Chen H Y. Planar gradient metamaterials[J]. Nature Reviews Materials, 1, 16067(2016).

    [32] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [34] Guo R, Decker M, Setzpfandt F et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas[J]. Science Advances, 3, e1700007(2017).

    [35] Wang C, Li Z, Kim M H et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nature Communications, 8, 2098(2017).

    [36] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [37] Yao C, Singh SC. ElKabbash M, et al. Quasi-rhombus metasurfaces as multimode interference couplers for controlling the propagation of modes in dielectric-loaded waveguides[J]. Optics Letters, 44, 1654-1657(2019).

    [38] Guo X, Ding Y, Chen X et al. 6(29): eabb4142(2020).

    [42] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [48] Xu H N, Dai D X, Shi Y C. Metamaterial polarization beam splitter: ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 13, 1970021(2019).

    [49] Park J B, Yeo D M, Shin S Y. Variable optical mode generator in a multimode waveguide[J]. IEEE Photonics Technology Letters, 18, 2084-2086(2006).

    [54] Wang H W, Zhang Y, He Y et al. Compact silicon waveguide mode converter employing dielectric metasurface structure[J]. Advanced Optical Materials, 1801191(2018).

    [59] Fan Y L, le Roux X, Lupu A et al. Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer[J]. Photonics Research, 7, 359-362(2019).

    [61] Halir R, Cheben P. Luque-González J M, et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial[J]. Laser & Photonics Reviews, 10, 1039-1046(2016).

    Tools

    Get Citation

    Copy Citation Text

    Kun Liao, Tianyi Gan, Xiaoyong Hu, Qihuang Gong. On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces[J]. Acta Optica Sinica, 2021, 41(8): 0823001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Sep. 16, 2020

    Accepted: Oct. 21, 2020

    Published Online: Apr. 10, 2021

    The Author Email: Hu Xiaoyong (xiaoyonghu@pku.edu.cn)

    DOI:10.3788/AOS202141.0823001

    Topics