Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2450019(2025)
Streamlined photoacoustic image processing with foundation models: A training-free solution
[1] R. Bommasani et al. On the opportunities and risks of foundation models(2021).
[2] C. Zhou et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT(2023).
[3] T. Wu et al. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J. Autom. Sin., 10, 1122-1136(2023).
[4] S. S. Biswas. Role of Chat GPT in public health. Ann. Biomed. Eng., 51, 868-869(2023).
[5] M. Awais et al. Foundational models defining a new era in vision: A survey and outlook(2023).
[6] A. Dosovitskiy et al. An image is worth 16×16 words: Transformers for image recognition at scale(2020).
[7] A. Radford et al. Learning transferable visual models from natural language supervision. Proc. 38th Int. Conf. Machine Learning, 139, 1-16(2021).
[8] A. Kirillov et al. Segment anything. Proc. 2023 IEEE/CVF Int. Conf. Computer Vision(2023).
[9] J. Wang et al. Review of large vision models and visual prompt engineering. Meta-Radiol., 1, 100047(2023).
[10] T. D. Le, S.-Y. Kwon, C. Lee. Segmentation and quantitative analysis of photoacoustic imaging: A review. Photonics, 9, 176(2022).
[11] K. Tang et al. Advanced image post-processing methods for photoacoustic tomography: A review. Photonics, 10, 707(2023).
[12] A. Y. Yuan et al. Hybrid deep learning network for vascular segmentation in photoacoustic imaging. Biomed. Opt. Express, 11, 6445-6457(2020).
[13] T. Vaiyapuri et al. Design of metaheuristic optimization-based vascular segmentation techniques for photoacoustic images. Contrast Media Mol. Imaging, 2022, 4736113(2022).
[14] C. D. Ly et al. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning. Photoacoustics, 25, 100310(2022).
[15] Y. Gao et al. Deep learning-based photoacoustic imaging of vascular network through thick porous media. IEEE Trans. Med. Imaging, 41, 2191-2204(2022).
[16] M. Sun et al. Full three-dimensional segmentation and quantification of tumor vessels for photoacoustic images. Photoacoustics, 20, 100212(2020).
[17] J. Zhang et al. Photoacoustic image classification and segmentation of breast cancer: A feasibility study. IEEE Access, 7, 5457-5466(2018).
[18] K. Jnawali et al. Automatic cancer tissue detection using multispectral photoacoustic imaging. Int. J. Comput. Assist. Radiol. Surg., 15, 309-320(2020).
[19] S. Mandal, X. L. Deán-Ben, D. Razansky. Visual quality enhancement in optoacoustic tomography using active contour segmentation priors. IEEE Trans. Med. Imaging, 35, 2209-2217(2016).
[20] L. Li et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng., 1, 0071(2017).
[21] C. Huang et al. Dual-scan photoacoustic tomography for the imaging of vascular structure on foot. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 70, 1703-1713(2023).
[22] X. Lin et al. Handheld interventional ultrasound/photoacoustic puncture needle navigation based on deep learning segmentation. Biomed. Opt. Express, 14, 5979-5993(2023).
[23] N. Davoudi, X. L. Deán-Ben, D. Razansky. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell., 1, 453-460(2019).
[24] C. Dehner et al. A deep neural network for real-time optoacoustic image reconstruction with adjustable speed of sound. Nat. Mach. Intell., 5, 1130-1141(2023).
[25] S. Na et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng., 6, 584-592(2022).
[26] P. van Es et al. Coregistered photoacoustic and ultrasound tomography of healthy and inflamed human interphalangeal joints. Proc. SPIE, 9539, 95390C(2015).
[27] P. van Es et al. Initial results of finger imaging using photoacoustic computed tomography. J. Biomed. Opt., 19, 060501(2014).
[28] H. Wang et al. SAM-Med3D(2023).
[29] W. Zheng et al. Deep learning enhanced volumetric photoacoustic imaging of vasculature in human. Adv. Sci., 10, 2301277(2023).
Get Citation
Copy Citation Text
Handi Deng, Yucheng Zhou, Jiaxuan Xiang, Liujie Gu, Yan Luo, Hai Feng, Mingyuan Liu, Cheng Ma. Streamlined photoacoustic image processing with foundation models: A training-free solution[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2450019
Category: Research Articles
Received: Apr. 15, 2024
Accepted: Jul. 9, 2024
Published Online: Feb. 21, 2025
The Author Email: Liu Mingyuan (dr.mingyuanliu@pku.edu.cn), Ma Cheng (cheng_ma@tsinghua.edu.cn)