Journal of Inorganic Materials, Volume. 34, Issue 3, 315(2019)

High Thermoelectric Performance of SnTe from the Disproportionation of SnO

Hui-Shan HU, Jun-You YANG, Ji-Wu XIN, Si-Hui LI, Qing-Hui JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(24)

    [2] CAO Y Q, ZHANG Q, ZHU T J et al. Bulk nanostructured thermoelectric materials: preparation, structure and properties[D]. Journal of Electronic Materials, 39, 1990-1995(2010).

    [3] SHI R Z, YU C, ZHU T J et al. High-performance half-heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering[D]. Acta Materialia, 57, 2757-2764(2009).

    [4] PEI Y Z, WANG H, XIE H H et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials[D]. Advanced Functional Materials, 23, 5123-5130(2013).

    [5] CHEN Z W, PEI Y Z, ZHANG X Y et al. Manipulation of phonon transport in thermoelectrics[D]. Advanced Materials, 30, 1-12(2018).

    [6] MOSHWAN R, YANG L, ZOU J et al. Eco-friendly SnTe thermoelectric materials: progress. Eco-friendly SnTe thermoelectric materials: progress and future challenges[D]. Advanced Functional Materials, 27, 1-18(2017).

    [7] HWANG J, MECHOLSKY N A et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[D]. Chemistry of Materials, 28, 376-384(2016).

    [8] LIU G Q, TAN X F, XU J T et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering[D]. Journal of Materiomics, 4, 62-67(2018).

    [9] JIANG Q H, LIU Y, YANG J Y et al. Microstructure tailoring in nanostructured thermoelectric materials[D]. Journal of Advanced Dielectrics, 6, 1-16(2016).

    [10] BISWAS K, HE J Q, WANG G Y et al. High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M=Ca, Ba)[D]. Energy & Environmental Science, 4, 4675-4684(2011).

    [11] HERMAN F, KORTUM R, ORTENBURGER I et al. Relativistic band structure of GeTe. Relativistic band structure of GeTe, SnTe, PbTe, PbSe,PbS[D]. Journal de Physique Colloques, 29, 62-C64-77(1968).

    [12] BREBRICK R F. Deviations from stoichiometry and electrical properties in SnTe[D]. Journal of Physics and Chemistry of Solids, 24, 27-36(1963).

    [13] BREBRICK R F, STRAUSS A J. Anomalous thermoelectric power as evidence for two-valence bands in SnTe[D]. Physical Review, 131, 104-110(1963).

    [14] CROCKER A J, ROGERS L M. Interpretation of the Hall coefficient, electrical resistivity and seebeck coefficient of p-type lead telluride[D]. British Journal of Applied Physics, 18, 563(1967).

    [15] KRIVORUCHKO S P, SABO E P, VEDENEEV V P. Tin telluride based thermoelectrical alloys[D]. Semiconductors, 32, 241-244(1998).

    [16] WU H J, ZHANG X, ZHAO L D et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe[D]. Journal of the American Chemical Society, 138, 2366-2373(2016).

    [17] SHI F Y, TAN G J, ZHAO L D[D]. et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 136, 7006-7017(2014).

    [18] LI W, PEI Y Z, ZHENG L L et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe[D]. Advanced Electronic Materials, 2, 1600019(2016).

    [19] JIANG Q H, YANG J Y, ZHOU Z W et al. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe[D]. Journal of Materials Chemistry A, 4, 13171-13175(2016).

    [20] LI W, LIN S Q, ZHENG L L et al. Interstitial defects improving thermoelectric SnTe in addition to band convergence[D]. ACS Energy Letters, 2, 563-568(2017).

    [22] LALONDE A, PEI Y Z, SHI X Y et al. Convergence of electronic bands for high performance bulk thermoelectrics[D]. Nature, 473, 66(2011).

    [23] LITTLEWOOD P B, MIHAILA B, SCHULZE R K et al. Band structure of SnTe studied by photoemission spectroscopy[D]. Physical Review Letters, 105, 1-4(2010).

    [24] LAN Y C, LIU W S, ZHANG Q Y et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites[D]. Advanced Energy Materials, 1, 577-587(2011).

    [25] HAO S H, SHI F Y, TAN G J et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[D]. Journal of the American Chemical Society, 137, 5100-5112(2015).

    [26] LAN Y C, LIAO B L, ZHANG Q et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[D]. Proceedings of the National Academy of Sciences, 110, 13261-13266(2013).

    Tools

    Get Citation

    Copy Citation Text

    Hui-Shan HU, Jun-You YANG, Ji-Wu XIN, Si-Hui LI, Qing-Hui JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High Thermoelectric Performance of SnTe from the Disproportionation of SnO[J]. Journal of Inorganic Materials, 2019, 34(3): 315

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 28, 2018

    Accepted: --

    Published Online: Sep. 26, 2021

    The Author Email:

    DOI:10.15541/jim20180288

    Topics