Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 94(2023)
Research Progress of Two-Dimensional MXene-Based Composite Photocatalysts
[1] [1] NISHIYAMA H, YAMADA T, NAKABAYASHI M, et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale[J]. Nature, 2021, 598: 304-307.
[2] [2] XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11: 4613.
[4] [4] FU C F, WU X J, YANG J L. Material design for photocatalytic water splitting from a theoretical perspective[J]. Adv Mater, 2018, 30(48): 1802106.
[5] [5] BAI S, WANG L L, LI Z Q, et al. Facet-engineered surface and interface design of photocatalytic materials[J]. Adv Sci, 2017, 4(1): 1600216.
[6] [6] ZHANG Y F, LI Y, YU H, et al. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance[J]. J Mater Sci Technol, 2022, 106: 139-146.
[7] [7] FATIMA H, AZHAR M R, KHIADANI M, et al. Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis[J]. Mater Today Energy, 2022, 23: 100895.
[8] [8] BIE C B, CHENG B, FAN J J, et al. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts[J]. Energy Chem, 2021, 3(2): 100051.
[9] [9] ZOU H, ZHOU Y, XIANG Y, et al. Preparation of flower-like DUT-5@BiOBr environmental purification functional material with natural photocatalytic activity[J]. Adv Eng Mater, 2020, 22(8): 2000267.
[10] [10] ORIMOLADE B O, IDRIS A O, FELENI U, et al. Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis-a comprehensive review[J]. Environ Pollut, 2021, 289: 117891.
[11] [11] SHARMA S K, KUMAR A, SHARMA G, et al. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review[J]. Chemosphere, 2022, 291: 132923.
[13] [13] LI X, YU J G, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem Rev, 2019, 119(6): 3962?4179.
[14] [14] HE Y Q, LEI Q, LI C G, et al. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels[J]. Mater Today, 2021, 50: 358-384.
[15] [15] LIANG X X, ZHAO J, WANG T, et al. Constructing a Zscheme heterojunction photocatalyst of GaPO4/α-MoC/Ga2O3 without mingling type-II heterojunction for CO2 reduction to CO[J]. ACS Appl Mater Interfaces, 2021, 13(28): 33034-33044.
[16] [16] KRANZ C, W?CHTLER M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes[J]. Chem Soc Rev, 2021, 50(2): 1407-1437.
[17] [17] LIU Y W, YANG W X, CHEN Q L, et al. Pt particle size affects both the charge separation and water reduction efficiencies of CdS-Pt nanorod photocatalysts for light driven H2 generation[J]. J Am Chem Soc, 2022, 144(6): 2705-2715.
[18] [18] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv Mater, 2021, 33(9): 2003521.
[20] [20] WANG Z L, FAN J J, CHENG B, et al. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction[J]. Mater Today Phys, 2020, 15: 100279.
[21] [21] HE F, ZHU B C, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Appl Catal B: Environ, 2020, 272: 119006.
[22] [22] KUANG P Y, NI Z R, YU J G, et al. New progress on MXenes-based nanocomposite photocatalysts[J]. Mater Rep: Energy, 2022, 2(1): 100081.
[23] [23] ZHONG Q, LI Y, ZHANG G K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives[J]. Chem Eng J, 2021, 409: 128099.
[24] [24] KUANG P Y, LOW J X, CHENG B, et al. MXene-based photocatalysts[J]. J Mater Sci Technol, 2020, 56: 18-44.
[26] [26] DING M M, AO W, XU H, et al. Facile construction of dual heterojunction CoO@TiO2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation[J]. J Hazard Mater, 2021, 420: 126686.
[27] [27] LOW J X, ZHANG L Y, TONG T, et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J]. J Catal, 2018, 361: 255-266.
[28] [28] SU T M, PENG R, HOOD Z D, et al. One‐step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution[J]. ChemSusChem, 2018, 11(4): 688-699.
[29] [29] LI H P, SUN B, GAO T T, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production[J]. Chin J Catal, 2022, 43(2): 461-471.
[30] [30] SUN B, TAO F R, HUANG Z X, et al. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity[J]. Appl Surf Sci, 2021, 535: 147354.
[31] [31] PENG C, XIE X, XU W K, et al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy[J]. Chem Eng J, 2021, 421: 128766.
[32] [32] XU W K, LI X Y, PENG C, et al. One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions[J]. Appl Catal B: Environ, 2022, 303: 120910.
[33] [33] XIAO R, ZHAO C X, ZOU Z Y, et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution[J]. Appl Catal B: Environ, 2020, 268: 118382.
[34] [34] ZHUANG Y, LIU Y F, MENG X F. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly[J]. Appl Surf Sci, 2019, 496: 143647.
[35] [35] PENG C, YANG X F, LI Y H, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Appl Mater Interfaces, 2016, 8(9): 6051-6060.
[36] [36] CAO S W, SHEN B J, TONG T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Adv Funct Mater, 2018, 28(21): 1800136.
[37] [37] CHEN X Y, GUO Y C, BIAN R M, et al. Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two- dimensional heterostructures for photocatalytic hydrogen production[J]. J Colloid Interf Sci, 2022, 613: 644-651.
[38] [38] SHARMA V, KUMAR A, KUMAR A, et al. Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO-Bi2WO6-Ti3C2 MXene under natural sunlight irradiation[J]. Chemosphere, 2022, 287: 132119.
[39] [39] BAI J X, SHEN R C, JIANG Z M, et al. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based ohmic junctions for effective photocatalytic H2 generation[J]. Chin J Catal, 2022, 43(2): 359-369.
[40] [40] WANG H, CHEN L, SUN Y P, et al. Ti3C2 MXene modified SnNb2O6 nanosheets schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution[J]. Sep Purif Technol, 2021, 265: 118516.
[41] [41] LIU D, LI C L, GE J Y, et al. 3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene nanosheets for enhancing visible light photocatalytic hydrogen evolution and dye contaminant elimination[J]. Appl Surf Sci, 2022, 579: 152180.
[42] [42] LIU K, ZHANG H B, FU T, et al. Construction of BiOBr/Ti3C2/exfoliated montmorillonite schottky junction: New insights into exfoliated montmorillonite for inducing MXene oxygen functionalization and enhancing photocatalytic activity[J]. Chem Eng J, 2022, 438: 135609.
[43] [43] HUANG W X, LI Z P, WU C, et al. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production[J]. J Mater Sci Technol, 2022, 120: 89-98.
[44] [44] OTHMAN Z, SINOPOLI A, MACKEY H R, et al. Efficient photocatalytic degradation of organic dyes by Ag NPs/TiO2/Ti3C2Tx MXene composites under UV and solar light[J]. ACS Omega, 2021, 6(49): 33325-33338.
[45] [45] CHENG L, CHEN Q, LI J, et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J]. Appl Catal B: Environ, 2020, 267: 118379.
[46] [46] LIU X J, CHEN T Q, XUE Y H, et al. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction[J]. Coordin Chem Rev, 2022, 459: 214440.
[47] [47] QIN J Z, HU X, LI X Y, et al. 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2[J]. Nano Energy, 2019, 61: 27-35.
[49] [49] ZARE E N, IFTEKHAR S, PARK Y, et al. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants[J]. Chemosphere, 2021, 280: 130907.
[50] [50] CUI C, GUO R H, REN E H, et al. Facile hydrothermal synthesis of rod-like Nb2O5/Nb2CTx composites for visible-light driven photocatalytic degradation of organic pollutants[J]. Environ Res, 2021, 193: 110587.
[51] [51] CUI C, GUO R H, XIAO H Y, et al. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation[J]. Appl Surf Sci, 2020, 505: 144595.
[52] [52] ZHUGE Z H, LIU X J, CHEN T Q, et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx schottky heterojunction: An experimental and mechanism study[J]. Chem Eng J, 2021, 421: 127838.
[53] [53] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581: 411-414.
[54] [54] CORREDOR J, RIVERO M J, RANGEL C M, et al. Comprehensive review and future perspectives on the photocatalytic hydrogen production[J]. J Chem Technol Biotechnol, 2019, 94(10): 3049-3063.
[55] [55] GUO C L, WU B G, YE S, et al. Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution[J]. J Colloid Interf Sci, 2022, 614: 367-377.
[56] [56] LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Appl Catal B: Environ, 2019, 246: 12-20.
[57] [57] HUANG H M, SONG H, KOU J H, et al. Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction[J]. J Energy Chem, 2022, 67: 309-341.
[58] [58] LI J Y, WANG Z Y, CHEN H Y, et al. A surface-alkalinized Ti3C2 MXene as an efficient cocatalyst for enhanced photocatalytic CO2 reduction over ZnO[J]. Catal Sci Technol, 2021, 11(14): 4953-4961.
[59] [59] YANG C, TAN Q Y, LI Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea[J]. Appl Catal B: Environ, 2020, 268: 118738.
[60] [60] ZHENG J Y, JIANG L, LYU Y H, et al. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future[J]. Energy Environ Mater, 2022, 5(2): 452-457.
[61] [61] XU C M, QIU P X, CHEN H, et al. Semi-crystalline graphitic carbon nitride with midgap states for efficient photocatalytic nitrogen fixation[J]. Appl Surf Sci, 2020, 529: 147088.
[63] [63] XUE Y J, KONG X K, GUO Y C, et al. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation[J]. J Materiomics, 2020, 6(1): 128-137.
[64] [64] LIAO Y, QIAN J, XIE G, et al. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts[J]. Appl Catal B: Environ, 2020, 273: 119054.
[65] [65] GAO W G, LI X M, LUO S J, et al. In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation[J]. J Colloid Interf Sci, 2021, 585: 20-29.
[66] [66] SUN B T, QIU P Y, LIANG Z Q, et al. The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis[J]. Chem Eng J, 2021, 406: 127177.
[67] [67] SUN C, CHEN Z Q, CUI J, et al. Site-exposed Ti3C2 MXene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation[J]. Catal Sci Technol, 2021, 11(3): 1027-1038.
Get Citation
Copy Citation Text
ZHOU Guowei, LIU Defa, LI Huapeng, BAI Shuojie, SUN Bin. Research Progress of Two-Dimensional MXene-Based Composite Photocatalysts[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 94
Special Issue:
Received: Apr. 12, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: Guowei ZHOU (gwzhou@qlu.edu.cn)