Journal of the Chinese Ceramic Society, Volume. 51, Issue 12, 3102(2023)
Preparation and Microwave Absorption Properties of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 High-Entropy Spinel Ceramics
[1] [1] SHANG C M, JI G B, LIU W, et al. One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application[J]. RSC Adv, 2015, 5(98): 80450-80456.
[2] [2] YAN F, ZHANG S, ZHANG X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers[J]. J Mater Chem C, 2018, 6(47): 12781-12787.
[3] [3] DONG S H, LIN C C, MENG X F. One-pot synthesis and microwave absorbing properties of ultrathin SrFe12O19 nanosheets[J]. J Alloys Compd, 2019, 783: 779-784.
[4] [4] FENG A L, HOU T Q, JIA Z R, et al. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber[J]. RSC Adv, 2020, 10(18): 10510-10518.
[5] [5] LIU C Y, ZHANG Y J, JIA J G, et al. Multi-susceptibile single-phased ceramics with both considerable magnetic and dielectric properties by selectively doping[J]. Sci Rep, 2015, 5: 9498.
[6] [6] CHE R C, ZHI C Y, LIANG C Y, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Appl Phys Lett, 2006, 88(3): 033105.
[7] [7] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3): 788-796.
[8] [8] PAN G H, ZHU J, MA S L, et al. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene[J]. ACS Appl Mater Interfaces, 2013, 5(23): 12716-12724.
[9] [9] SUI M X, SUN X D, LOU H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: Effect of reactant concentration, reaction temperature and reaction time[J]. J Mater Sci Mater Electron, 2018, 29(9): 7539-7550.
[10] [10] LEI C L, DU Y W. Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites[J]. J Alloys Compd, 2020, 822: 153674.
[11] [11] HOUBI A, ALDASHEVICH Z A, ATASSI Y, et al. Microwave absorbing properties of ferrites and their composites: A review[J]. J Mag Mag Mater, 2021, 529: 167839.
[13] [13] MOITRA D, HAZRA S, GHOSH B K, et al. A facile low temperature method for the synthesis of CoFe2O4 nanoparticles possessing excellent microwave absorption properties[J]. RSC Adv, 2015, 5(63): 51130-51134.
[14] [14] PRAVEENA K, SADHANA K, MATTEPPANAVAR S, et al. Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni0.4Zn0.2Mn0.4Fe2O4 potential for radar absorbing[J]. J Magn Magn Mater, 2017, 423: 343-352.
[15] [15] CAI X D, WANG J J, CUI K B, et al. Crystallization processes and microwave absorption properties of amorphous LiZn ferrite hollow microspheres[J]. J Mater Sci Mater Electron, 2017, 28(13): 9596-9605.
[18] [18] LIU Q, JING Y Q, SU S, et al. Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing[J]. Opt Mater, 2020, 104: 109938.
[19] [19] YEH J W. Recent progress in high-entropy alloys[J]. Ann Chim Sci Mat, 2006, 31(6): 633-648.
[20] [20] SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency[J]. Dalton Trans, 2017, 46(36): 12167-12176.
[21] [21] BRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. Phys Status Solidi RRL, 2016, 10(4): 328-333.
[22] [22] MA J B, ZHAO B, XIANG H M, et al. High-entropy spinel ferrites MFe2O4 (M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption[J]. J Adv Ceram, 2022, 11(5): 754-768.
[24] [24] RADON A, HAWELEK L, LUKOWIEC D, et al. Dielectric and electromagnetic interference shielding properties of high entropy (Zn, Fe, Ni, Mg, Cd)Fe2O4 ferrite[J]. Sci Rep, 2019, 9(1): 20078.
[25] [25] ZHOU W, LI Y, LONG L, et al. High-temperature electromagnetic wave absorption properties of Cf/SiCNFs/Si3N4 composites[J]. J Am Ceram Soc, 2020, 103(12): 6822-6832.
[26] [26] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765.
[27] [27] XIANG X, XING X, DAI D, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021(3): 385-441.
[28] [28] HUANG X G, ZHANG J, RAO W F, et al. Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites[J]. J Alloys Compd, 2016, 662: 409-414.
[29] [29] JIA J G, LIU C Y, MA N, et al. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption[J]. Sci Technol Adv Mater, 2013, 14(4): 045002.
[30] [30] HOUBI A, ALDASHEVICH Z A, ATASSI Y, et al. Microwave absorbing properties of ferrites and their composites: A review[J]. J Magn Magn Mater, 2021, 529: 167839.
[31] [31] MA Z, LIU Q F, YUAN J, et al. Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers[J]. Phys Status Solidi B, 2012, 249(3): 575-580.
[32] [32] MA J B, ZHAO Z, XIANG X, et al. High-entropy spinel ferrites MFe2O4 (M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption[J]. J Adv Ceram, 2022(5): 754-768.
[33] [33] MUSIC B, WRIGHT Q, WARD T Z, et al. Tunable magnetic ordering through cation selection in entropic spinel oxides[J]. Phys Rev Materials, 2019, 3(10): 104416.
[34] [34] SNOEK J L. Gyromagnetic resonance in ferrites[J]. Nature, 1947, 159(4055): 90.
[35] [35] WANG Y, WU X M, ZHANG W Z, et al. 3D heterostructure of graphene@Fe3O4@WO3@PANI: Preparation and excellent microwave absorption performance[J]. Synth Met, 2017, 231: 7-14.
[36] [36] HUANG X G, ZHANG J, LAI M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. J Alloys Compd, 2015, 627: 367-373.
[37] [37] LIU J L, ZHANG P, ZHANG X K, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method[J]. Rare Met, 2017, 36(9): 704-710.
[38] [38] QIAN K, YAO Z J, LIN H Y, et al. The influence of Nd substitution in Ni-Zn ferrites for the improved microwave absorption properties[J]. Ceram Int, 2020, 46(1): 227-235.
[39] [39] BHATTACHARYA P, HATUI G, MANDAL A, et al. Investigation of microwave absorption property of the core-shell structured Li0.4Mg0.6Fe2O4/TiO2 nanocomposite in X-band region[J]. J Alloys Compd, 2014, 590: 331-340.
[40] [40] QIAO J, XU D M, LV L F, et al. Self-assembled ZnO/co hybrid nanotubes prepared by electrospinning for lightweight and high-performance electromagnetic wave absorption[J]. ACS Appl Nano Mater, 2018, 1(9): 5297-5306.
[41] [41] SONG L L, DUAN Y P, LIU J, et al. Insight into electromagnetic absorbing performance of MnO2 from two dimensions: Crystal structure and morphology design[J]. Mater Charact, 2020, 163: 110300.
[42] [42] ZHAO B A, GUO X Q, ZHAO W Y, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties[J]. ACS Appl Mater Interfaces, 2016, 8(42): 28917-28925.
[43] [43] SU K, WANG Y, HU K X, et al. Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties[J]. ACS Appl Mater Interfaces, 2021, 13(18): 22017-22030.
[44] [44] ZHOU Y C, ZHAO B, CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2021, 74: 105-118.
[45] [45] BORA P J, HARSTAD S M, GUPTA S, et al. Gadolinium silicide (Gd5Si4) nanoparticles for tuneable broad band microwave absorption[J]. Mater Res Express, 2019, 6(5): 055053.
[46] [46] CHEN H, ZHAO B, ZHAO Z F, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. J Mater Sci Technol, 2020, 47: 216-222.
[47] [47] ZHANG W M, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. J Mater Sci Technol, 2021, 87: 155-166.
[48] [48] ZHANG W M, ZHAO B, XIANG H M, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. J Adv Ceram, 2021, 10(1): 62-77.
Get Citation
Copy Citation Text
WANG Qian, MA Yuzhao, YANG Xiaofeng, ZHANG Shengsheng, ZHANG Yilong, ZHANG Jiahui. Preparation and Microwave Absorption Properties of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 High-Entropy Spinel Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3102
Received: May. 19, 2023
Accepted: --
Published Online: Jan. 19, 2024
The Author Email:
CSTR:32186.14.