Optics and Precision Engineering, Volume. 31, Issue 15, 2287(2023)

Simulating primary visual cortex to improve robustness of CNN neural network structures

Lijuan ZHANG1,2, Mengda HU2, Ziwei ZHANG2, Yutong JIANG3, and Dongming LI1、*
Author Affiliations
  • 1School of Internet of Things Engineering, Wuxi University, Wuxi2405, China
  • 2Collegel of Computer Science and Technology, Changchun University of Technology, Changchun13001, China
  • 3China North Vehicle Research Institute, Beijing100072, China
  • show less
    References(34)

    [1] Y LECUN, L BOTTOU, Y BENGIO et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324(1998).

    [2] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).

    [3] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [4] C SZEGEDY, V VANHOUCKE, S IOFFE et al. Rethinking the inception architecture for computer vision, 2818-2826(2016).

    [5] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(2017).

    [8] [8] 8林点, 潘理, 易平. 面向图像识别的卷积神经网络稳定性研究进展[J]. 网络与信息安全学报, 2022, 8(3):111-122. doi: 10.11959/j.issn.2096-109x.2022037LIND, PANL, YIP. Research on the robustness of convolutional neural networks in image recognition[J]. Chinese Journal of Network and Information Security, 2022, 8(3):111-122.(in Chinese). doi: 10.11959/j.issn.2096-109x.2022037

    [10] P VINCENT, H LAROCHELLE, Y BENGIO et al. Extracting and composing robust features with denoising autoencoders, 1096-1103(2008).

    [13] C H XIE, M X TAN, B Q GONG et al. Adversarial examples improve image recognition, 816-825(2020).

    [14] N CARLINI, D WAGNER. Adversarial examples are not easily detected: bypassing ten detection methods, 3-14(3).

    [15] S ULLMAN, L ASSIF, E FETAYA et al. Atoms of recognition in human and computer vision. Proceedings of the National Academy of Sciences of the United States of America, 113, 2744-2749(2016).

    [16] D H HUBEL, T N WIESEL. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106-154(1962).

    [17] A M ZADOR. A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications, 10, 3770(2019).

    [18] A H MARBLESTONE, G WAYNE, K P KORDING. Toward an integration of deep learning and neuroscience. Frontiers in Computational Neuroscience, 10, 94(2016).

    [20] G W LINDSAY, K D MILLER. How biological attention mechanisms improve task performance in a large-scale visual system model. eLife, 7, 38105(2018).

    [21] H HASANI, M SOLEYMANI, H AGHAJAN. Surround modulation: a bio-inspired connectivity structure for convolutional neural networks. Advances in Neural Information Processing Systems(2019).

    [23] E KIM, J REGO, Y WATKINS et al. Modeling biological immunity to adversarial examples, 4665-4674(2020).

    [24] J DAPELLO, T MARQUES, M SCHRIMPF et al. Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations. Advances in Neural Information Processing Systems, 33, 13073-13087(2020).

    [25] J P JONES, L A PALMER. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233-1258(1987).

    [26] E H ADELSON, J R BERGEN. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284(1985).

    [27] B VINTCH, J A MOVSHON, E P SIMONCELLI. A convolutional subunit model for neuronal responses in macaque V1. The Journal of Neuroscience, 35, 14829-14841(2015).

    [28] S A CADENA, G H DENFIELD, E Y WALKER et al. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Computational Biology, 15(2019).

    [29] M SCHRIMPF, J KUBILIUS, H HONG et al. Brain-Score: which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv(2018).

    [31] Y EL-SHAMAYLEH, R D KUMBHANI, N T DHRUV et al. Visual response properties of V1 neurons projecting to V2 in macaque. The Journal of Neuroscience, 33, 16594-16605(2013).

    [32] W R SOFTKY, C KOCH. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience, 13, 334-350(1993).

    Tools

    Get Citation

    Copy Citation Text

    Lijuan ZHANG, Mengda HU, Ziwei ZHANG, Yutong JIANG, Dongming LI. Simulating primary visual cortex to improve robustness of CNN neural network structures[J]. Optics and Precision Engineering, 2023, 31(15): 2287

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Feb. 14, 2023

    Accepted: --

    Published Online: Sep. 5, 2023

    The Author Email: LI Dongming (LDM0214@163.com)

    DOI:10.37188/OPE.20233115.2287

    Topics