Journal of Inorganic Materials, Volume. 34, Issue 1, 27(2019)
Design of the Nature-inspired Algorithms Library and Its Significance for New Materials Research and Development
[1] , X SUN, D XIANG X. A combinatorial approach to materials discovery. Science, 268, 1738(1995).
[2] Y HUANG H, X XIE J, J ZHU. Recent progress and new ideas for accelerating research in rare earth steel. Journal of Iron and Steel Research, 29, 513-529(2017).
[3] W LU, S RAMAKRISHNA, T ZHANG et al. Materials informatics. Journal of Intelligent Manufacturing, 2018, 1-20.
[4] Y LI, Z LIU, D SHI et al. The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative. Scripta Materialia, 143, 129-136(2018).
[5] . The development of material genome technology in the field of new energy materials. Energy Storage Science and Technology, 6, 990(2017).
[6] A WHITE A. Big data are shaping the future of materials science. Mrs Bulletin, 38, 594-595(2013).
[7] A AGRAWAL, A CHOUDHARY, L WARD et al. A general- purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2, 16028(2016).
[8] M GIBERTINI, N MOUNET, P SCHWALLER et al. Two- dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotechnology, 13, 246-252(2018).
[9] X LI, S XU, Y ZHAO et al. Two-dimensional semiconducting boron monolayers. Journal of the American Chemical Society, 139, 17233-17236(2017).
[10] M JIN H, B SULLIVAN M, L TAN T et al. High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS Nano, 11, 4407-4418(2017).
[11] X HUANG, J LIN, J ZHOU et al. A library of atomically thin metal chalcogenides. Nature, 556, 355(2018).
[12] J HANSON R, R KINCAID D, L LAWSON C et al. Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software (TOMS), 5, 308-323(1979).
[13] E ANDERSON, Z BAI, C BISCHOF et al. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. Society for Industrial and Applied Mathematics(1999).
[14] R CURTIN, C SANDERSON. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software(2016).
[15] . Intel® Math Kernel Library Developer Reference(2017).
[16] , W DEMMEL J, T HEATH M. Parallel numerical linear algebra. Acta Numerica, 2, 111-197(1993).
[17] L KETTNER. N A HER S, GOODMAN J E, et al. Two Computational Geometry Libraries: LEDA and CGAL. Handbook of Discrete and Computational Geometry, Chapman & Hall/. CRC, 1435-1463(2004).
[18] A BAKSHEEV, K KORNYAKOV, K PULLI et al. Real time computer vision with OpenCV. Queue, 10, 40(2012).
[19] N CHAKRABORTI. Genetic algorithms in materials design and processing. International Materials Reviews, 49, 246-260(2004).
[20] W PASZKOWICZ. Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields. Materials and Manufacturing Processes, 24, 174-197(2009).
[21] B HKDH. Neural networks in materials science. ISIJ international, 39, 966-979(1999).
[22] H BHADESHIA. Neural networks and information in materials science. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1, 296-305(2009).
[23] H BHADESHIA, C DIMITRIU R, S FORSIK et al. Performance of neural networks in materials science. Materials Science and. Technology., 25, 504-510(2009).
[24] J EVANS, S YANG, M ZHANG Y. Revisiting Hume-Rothery's rules with artificial neural networks. Acta Materialia, 56, 1094-1105(2008).
[25] J EVANS, F YANG S, M ZHANG Y. Detection of material property errors in handbooks and databases using artificial neural networks with hidden correlations. Philosophical Magazine, 90, 4453-4474(2010).
[26] R EVANS J, S YANG, Y ZHANG. Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. Journal of Chemical and Engineering Data, 56, 328-337(2011).
[27] R UBIC, F XUE D, M ZHANG Y et al. Predicting the structural stability and formability of ABO3-type perovskite compounds using artificial neural networks. Materials Focus, 1, 57-64(2012).
[28] E CLOUTIER, J GUAY, R NADEAU. New evidence about the existence of a bandwagon effect in the opinion formation process. International Political Science Review, 14, 203-213(1993).
[29] J EARMAN, J MOSTERIN. A critical look at inflationary cosmology. Philosophy of Science, 66, 1-49(1999).
[30] V TRIMBLE. Existence and nature of dark matter in the universe. Annual Review of Astronomy & Astrophysics, 25, 425-472(1987).
[31] A EINSTEIN, B PODOLSKY, N ROSEN. Can quantum- mechanical description of physical reality be considered complete?. Phys. Rev., 47, 777-780(1935).
[32] E SHANNON C. A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423(1948).
[33] X YANG. A New Metaheuristic Bat-inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010),. Springer, 65-74(2010).
[34] K KHAN, A SAHAI. A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context. International Journal of Intelligent Systems and Applications, 4, 23(2012).
[35] G BEKDA C S, M NIGDELI S, X YANG. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 159, 89-98(2018).
[36] A KHACHATURYAN, S SEMENOVSKAYA, B VAINSTEIN. Statistical-thermodynamic approach to determination of structure amplitude phases. Sov. Phys. Crystallography, 24, 519-524(1979).
[37] A KHACHATURYAN, S SEMENOVSOVSKAYA, B VAINSHTEIN. The thermodynamic approach to the structure analysis of crystals. Acta Crystallographica Section A: Crystal Physics, Diffraction,. Theoretical and General Crystallography, 37, 742-754(1981).
[38] D GELATT C, S KIRKPATRICK, P VECCHI M. Optimization by simulated annealing. Science, 220, 671-680(1983).
[39] L ANDERSON H. METROPOLIS. Monte Carlo and the Maniac. Los alamos Science, 14, 96-108(1986).
[40] . Monte-Carlo Algorithms in Graph Isomorphism Testing. Université tde Montréal Technical Report, DMS(1979).
[41] A LEVIN L. The tale of one-way functions. Problems of Information Transmission, 39, 92-103(2003).
[42] D GRUNDY. Concepts and Calculation in Cryptography. Citeseer(2008).
[43] R QUINLAN J. Induction of decision trees. Machine Learning, 1, 81-106(1986).
[44] R QUINLAN J. C4.5: Programs for Machine Learning. Elsevier(2014).
[45] M COULOM R E. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Springer, 72-83(2006).
[46] L KOCSIS. SZEPESV A RI C. Bandit Based Monte-Carlo Planning. Springer, 282-293(2006).
[47] A HUANG, J MADDISON C, D SILVER et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484-489(2016).
[48] J SCHRITTWIESER, D SILVER, K SIMONYAN et al. Mastering the game of go without human knowledge. Nature, 550, 354(2017).
[49] L FAN, H LIU Y, W ZHANG. Ecological Pyramid Particle Swarm Optimization. Computer Science, 44, 237-244(2017).
[50] V RAO R, J SAVSANI V, P VAKHARIA D. Teaching- learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43, 303-315(2011).
[51] V RAO R, J SAVSANI V, P VAKHARIA D. Teaching- learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 183, 1-15(2012).
[52] F DENG, S TUO, L YONG. Survey of teaching-learning-based optimization algorithms. Application Research of Computers, 30, 1933-1938(2013).
[53] X BI, J WANG. Teaching-learning-based optimization algorithm with hybrid learning strategy. Journal of Zhejiang University (Engineering Science), 51, 1024-1031(2017).
[54] K LIU, Y TAN, J ZHANG et al. Random Black Hole Particle Swarm Optimization and Its Application. IEEE, 359-365(2008).
[55] A HATAMLOU. Black hole: a new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184(2013).
[56] D WARNANA D. OTHERS. Black hole algorithm for determining model parameter in self-potential data. Journal of Applied Geophysics, 148, 189-200(2018).
[57] Y LIU, L MA, Y ZHU et al. A novel bionic algorithm inspired by plant root foraging behaviors. Applied Soft Computing, 37, 95-113(2015).
[58] S DAN. Biogeography-based optimization. IEEE Transactions on. Evolutionary Computation., 12, 702-713(2008).
[59] C GOERTLER, W HUBERT, T WESCHE. Modified habitat suitability index model for brown trout in Southeastern Wyoming. North American Journal of Fisheries Management, 7, 232-237(1987).
[60] X DUAN, C WANG, N WANG et al. Survey of Biogeography- based Optimization. Computer Science, 37, 34-38(2010).
[61] H MA, P SIARRY, D SIMON et al. Biogeography-based optimization: a 10-year review. IEEE Transactions on Emerging Topics in Computational Intelligence, 1, 391-407(2017).
[62] P BENIOFF. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22, 563-591(1980).
[63] P FEYNMAN R. Simulating physics with computers. International Journal of Theoretical Physics, 21, 467-488(1982).
[64] D DEUTSCH. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 400, 97-117(1985).
[65] H AMIN M, S GILDERT, W JOHNSON M et al. Quantum annealing with manufactured spins. Nature, 473, 194(2011).
[66] S KNYSH, S MANDRA, D VENTURELLI et al. Quantum optimization of fully connected spin glasses. Physical Review X, 5, 31040(2015).
[67] I BUNYK P, M HOSKINSON E, W JOHNSON M et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity, 24, 1-10(2014).
[68] Y HE, H LI Y, H WANG et al. High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365(2017).
[69] H CANTU S, Y LIANG Q, V VENKATRAMANI A et al. Observation of three-photon bound states in a quantum nonlinear medium. Science, 359, 783(2018).
[70] R GOOGLE. A Preview of Bristlecone, Google's New Quantum Processor..
[71] D BECKMAN, N CHARI A, S DEVABHAKTUNI et al. Efficient networks for quantum factoring. Physical Review A, 54, 1034-1063(1996).
[72] K GROVER L. A Fast Quantum Mechanical Algorithm for Database Search. STOC’96 Proceedings of the twenty-annaal ACM Symposium on Theory of. Computing, 212-219(1996).
[73] K GROVER L. From Schrödinger's equation to the quantum search algorithm. Pramana, 56, 333-348(2001).
[74] K GROVER L. Quantum computing. Sciences, 39, 24-30(1999).
[75] . AKL M N S G, 558-559(2000).
[76] R SIMON D. On the Power of Quantum Computation. Society for Industrial and Applied Mathematics, 1759-1768(1997).
[77] N PASCAL KOIRAN V, N PORTIER. A quantum lower bound for the query complexity of Simon's problem. Lecture Notes in Computer Science, 3580, 1287-1298(2005).
[78] R JOZSA. Quantum factoring, discrete logarithms, and the hidden subgroup problem. Computing in Science & Engineering, 3, 34-43(2000).
[79] W SHOR P. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a. Quantum Computer., 303-332(1999).
[80] P BUHLER J. JR H W L, POMERANCE C. Factoring integers with the number field sieve. OAI, 5, 231-253(1993).
[81] , K LENSTRA A. The Development of the. Number Field Sieve. Springer-Verlag, 564-572(1993).
[82] 2: 15023-1-17. MONTANARO A(2016).
[83] K GROVER L. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79, 325-328(1997).
[84] , M BOYER, G BRASSARD. Tight Bounds on Quantum Searching. Wiley‐VCH Verlag GmbH & Co. KGaA, 493-505(1998).
[85] A AMBAINIS, M CHILDS A, W REICHARDT B et al. Any AND-OR Formula of Size N can be Evaluated in time N1/2 + o(1) on a Quantum Computer., 363-372(2007).
[86] X SUN, C YAO A, S ZHANG. Graph Properties and Circular Functions: How Low Can Quantum Query Complexity Go?, 286-293(2004).
[87] G BRASSARD. HØYER P, MOSCA M, et al. Quantum amplitude amplification and estimation. Quantum Computation &. Information., 5494, 53-74(2002).
[88] U SCHÖNING. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems, 410(1999).
[89] W HARROW A, A HASSIDIM, S LLOYD. Quantum algorithm for linear systems of equations. Physical Review Letters, 103, 150502(2009).
[90] E FARHI, J GOLDSTONE, S GUTMANN et al. Quantum Computation by Adiabatic Evolution. Quantum Physics, arxiv: quant-ph/0001106..
[91] X SUN. A survey on quantum computing. Scientia Sinica Informationis, 46, 982(2016).
[92] P. WITTEK(2014).
[93] M MOORE, A NARAYANAN. Quantum-inspired. Genetic Algorithms., 61-66(1996).
[94] H HAN K, H KIM J. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6, 580-593(2002).
[95] L SHI, J YANG, Z ZHUANG. Multi-universe parallel quantum genetic algorithm. Acta Electronica Sinica, 32, 923-928(2004).
[96] H CHEN, C ZHANG, J ZHANG. Chaos Updating Rotated Gates Quantum-inspired. Genetic Algorithm., 1108-1112(2004).
[97] F TANG, L WANG, H WU. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation. Applied Mathematics and Computation, 171, 1141-1156(2005).
[98] L WANG. Advances in quantum-inspired evolutionary algorithms. Control and Decision, 23, 1321-1326(2008).
[99] P PYLLKKÄNEN, P PYLLKKÖ. New Directions in Cognitive Science. Creating Consilience: Integrating the Sciences & the. Humanities.(1995).
[100] S KAK. On. Quantum Neural Computing. Elsevier Science Inc., 143-160(1995).
[101] C KAK S. The Three Languages Of The Brain: Quantum, Reorganizational, and. Associative., 185-219(1996).
[102] A GAUTAM, S KAK. Symbols, meaning, and origins of mind. Biosemiotics, 6, 301-310(2013).
[103] , R DE OLIVEIRA W, B LUDERMIR T. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks, 76, 55-64(2016).
[104] G MARTINELLI, M PANELLA. Neural networks with quantum architecture and quantum learning. International Journal of Circuit Theory & Applications, 39, 61-77(2011).
[105] F PETRUCCIONE, M SCHULD, I SINAYSKIY. The quest for a Quantum Neural Network. Quantum Information Processing, 13, 2567-2586(2014).
[106] O PATEL, V PATEL, A TIWARI et al. Quantum Based Neural Network Classifier and Its Application for Firewall to. Detect Malicious Web Request., 67-74(2015).
[107] J LI. Quantum-inspired neural networks with application. Open Journal of Applied Sciences, 5, 233-239(2015).
[108] V ALTAISKY M, E KAPUTKINA N, A KRYLOV V. Quantum neural networks: current status and prospects for development. Physics of Particles &. Nuclei., 45, 1013-1032(2014).
[109] W FANG, J SUN, Z XIE et al. Convergence analysis of quantum- behaved particle swarm optimization algorithm and study on its control parameter. Acta Physica Sinica, 6, 3686-3694(2009).
[110] A MANJU, J NIGAM M. Applications of quantum inspired computational intelligence: a survey. Artificial Intelligence Review, 42, 79-156(2014).
[111] T HOOFT G. The cellular automaton interpretation of quantum mechanics. Physics Today, 70, 60(2017).
[112] S LLOYD. A theory of quantum gravity based on quantum computation. Quantum Physics(2018).
[113] M YING. Recent progress in the research of quantum programming. Communcations of the CCF, 13, 21-27(2017).
[114] K NAKAMATSU, S PATNAIK, X YANG. Nature-Inspired Computing and Optimization: Theory and Applications. Springer(2017).
[115] X YANG. Nature-inspired Computation in Engineering. Springer(2016).
[116] R CHIONG. Nature-inspired Algorithms for Optimisation. Springer(2009).
[117] K DU, M SWAMY. Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature. Birkhäuser(2016).
[118] X. YANG(2010).
[119] E BURKE, G KENDALL, J NEWALL et al. Hyper-heuristics: An Emerging Direction in Modern Search Technology. Handbook of Metaheuristics,. Springer, 457-474(2003).
[120] A DELORME. Genetic Algorithm for Optimization of Mechanical Properties. Technical report,. University of Cambridge(2003).
[121] J HAN, M KAMBER, J PEI. Data Mining: Concepts and Techniques. Elsevier(2011).
[122] I FOSTER, I RAICU, Y ZHAO et al. Cloud Computing and Grid Computing 360-degree Compared. IEEE, 1-10(2008).
[123] R BOUTABA, L CHENG, Q ZHANG. Cloud computing: state- of-the-art and research challenges. Journal of Internet Services and Applications, 1, 7-18(2010).
[124] I FISTER, I FISTER JR, X YANG et al. A brief review of nature- inspired algorithms for optimization. Elektrotehniški Vestnik, 80, 116-122(2013).
[125] X YANG. Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer(2015).
[126] M KARAMANOGLU, X YANG. Swarm Intelligence and Bio-inspired Computation: An Overview. Swarm Intelligence and Bio-Inspired Computation,. Elsevier, 3-23(2013).
[127] H REISSNER. Über die eigengravitation des elektrischen Feldes nach der Einsteinschen theorie. Annalen der Physik, 355, 106-120(1916).
[128] K SCHWARZSCHILD. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen theorie.(1916).
[129] J DROSTE. On the field of a single centre in Einstein's theory of gravitation. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 17, 998-1011(1915).
[130] W HAWKING S. Black hole explosions?. Nature, 248, 30-31(1974).
[131] S. DATTA(2015).
[132] J APOSTOLAKIS. An introduction to data mining. Structure & Bonding, 134, 1-35(2009).
[133] V KUMAR, T PANGNING, M STEINBACH. Introduction to data mining. Data Analysis in the Cloud, 22, 1-25(2014).
[134] P CHATTOPADHYAY P, S DATTA. Soft computing techniques in advancement of structural metals. International Materials Reviews, 58, 475-504(2013).
[135] K BANERJEE M, S DATTA. Fuzzy modeling of strength- composition-process parameter relationships of HSLA steels. Materials and Manufacturing Processes, 20, 761-776(2005).
[136] S DATTA, M MAHFOUF, Q ZHANG et al. Imprecise knowledge based design and development of titanium alloys for prosthetic applications. Journal of the Mechanical Behavior of Biomedical Materials, 53, 350-365(2016).
[137] S DATTA, P DEY, S DEY et al. Rough set approach to predict the strength and ductility of TRIP steel. Materials and Manufacturing Processes, 24, 150-154(2009).
[138] S GILL S, J SINGH. Fuzzy modeling and simulation of ultrasonic drilling of porcelain ceramic with hollow stainless steel tools. Materials and Manufacturing Processes, 24, 468-475(2009).
[139] P CHATTOPADHYAY P, S DATTA, S DEY et al. Modeling the properties of TRIP steel using AFIS: a distributed approach. Computational Materials Science, 43, 501-511(2008).
[140] V BALACHANDRAN P, R DEHGHANNASIRI, D XUE et al. Optimal experimental design for materials discovery. Computational Materials Science, 129, 311-322(2017).
[141] M GONG, H LI, E LUO et al. A multiobjective cooperative coevolutionary algorithm for hyperspectral sparse unmixing. IEEE Transactions on Evolutionary Computation, 21, 234-248(2017).
[142] M GONG, Z WANG, Z ZHU et al. A similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication system. IEEE Transactions on Evolutionary Computation, 21, 878-897(2017).
[143] S YANG X. Nature-Inspired Optimization Algorithms. Elsevier Science Publishers B. V., 1292(2014).
[144] E FRANK, A HALL M, H WITTEN I et al. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann(2016).
Get Citation
Copy Citation Text
Shi-Yu DU, Yi-Ming ZHANG, Kan LUO, Qing HUANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Design of the Nature-inspired Algorithms Library and Its Significance for New Materials Research and Development[J]. Journal of Inorganic Materials, 2019, 34(1): 27
Category: Research Articles
Received: May. 8, 2018
Accepted: --
Published Online: Feb. 4, 2021
The Author Email: