Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010002(2023)

Infrared Small-Target Detection Based on Hybrid Domain Module and Hole Convolution

Haicheng Qu, Xinxin Wang*, and Jun Ouyang
Author Affiliations
  • College of Software, Liaoning Technical University, Huludao 125105, Liaoning, China
  • show less
    Figures & Tables(19)
    Detection scheme of proposed algorithm
    Detection scheme of typical FCN
    Detection scheme of MDvsFA_cGAN
    Network structure of proposed algorithm
    Overall flow of CBAM
    Overall flow of CAM
    Overall flow of SAM
    Real infrared images and binarised labels
    Point source generated by PSF combined with rotation transformation
    Synthetic infrared images and labels based on PSF
    Synthetic infrared images and labels based on Mosaic
    Correspondence of indicator variable
    Effects comparison of different epoch
    RF_measure index comparison of typical deep learning model. (a) RF_measure metric iterations for each deep learning model on the IR_GS Dataset; (b) RF_measure metric iterations for each deep learning model on the IR_GMS Dataset
    Comparison of detection results for different algorithms
    Given infrared images and predicted results
    • Table 1. Design parameters of encoding-decoding

      View table

      Table 1. Design parameters of encoding-decoding

      CombinationLayerKernel_sizeStridePaddingDilationIn_channelOut_channelReLU_param
      EncoderCBL_131113640.2
      CBL_2312264640.2
      CBL_3314464640.2
      CBL_4318864640.2
      CBL_531161664640.2
      CBL_631323264640.2
      CBL_731646464640.2
      DecoderCBL_831323264640.2
      CBL_9311616128640.2
      CBL_103188128640.2
      CBL_113144128640.2
      CBL_123122128640.2
      CBL_133111128640.2
    • Table 2. Dataset expansion mode and details

      View table

      Table 2. Dataset expansion mode and details

      DatasetSynthesisMosaic augmentationTotalTraining setValid setLSNR /dB
      IR_GS Dataset1000099001002.83
      IR_GMS Dataset15000149501502.96
    • Table 3. Comparison of experimental results of typical deep learning model

      View table

      Table 3. Comparison of experimental results of typical deep learning model

      DatasetNetworkRFPRRprecisionRrecallRF_measureSpeedup
      IR_GS DatasetMDvsFA_cGAN1.48×10-30.7400.3800.5021.6X
      DeepLab_ResNet7.32×10-40.2400.1890.2125.1X
      Fcn8x_ResNet4.23×10-40.3800.2820.3242.8X
      SegNet4.36×10-40.5810.3500.4361.6X
      UNet3.21×10-40.5260.3900.4481.2X
      UNet++3.16×10-40.6240.4140.4983.5X
      dilation5.64×10-40.7230.4030.5181X
      dilation_CBAM4.53×10-40.7470.4450.5581.2X
      IR_GMS DatasetMDvsFA_cGAN1.04×10-30.6830.5000.5781.6X
      DeepLab_ResNet4.44×10-40.3300.3420.3365.1X
      Fcn8x_ResNet5.01×10-40.4520.2860.3502.8X
      SegNet3.49×10-40.6070.4890.5421.6X
      UNet3.86×10-40.5970.4650.5221.2X
      UNet++3.17×10-40.5840.4830.5293.5X
      dilation5.46×10-40.6930.5420.6081X
      dilation_CBAM4.71×10-40.6700.5880.6261.2X
    Tools

    Get Citation

    Copy Citation Text

    Haicheng Qu, Xinxin Wang, Jun Ouyang. Infrared Small-Target Detection Based on Hybrid Domain Module and Hole Convolution[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 14, 2021

    Accepted: Jan. 28, 2022

    Published Online: May. 17, 2023

    The Author Email: Wang Xinxin (wxxwang@foxmail.com)

    DOI:10.3788/LOP213224

    Topics