Acta Photonica Sinica, Volume. 53, Issue 2, 0214002(2024)
High Efficiency Yb∶YAG Thin Disk Laser Based on Zero Phonon Line Pumping
[1] PENILLA E H, DEVIA-CRUZ L F, WIEG A T et al. Ultrafast laser welding of ceramics[J]. Science, 365, 803(2019).
[2] MA Bo, GAO Xiangdong, HUANG Yijie et al. A review of laser welding for aluminium and copper dissimilar metals[J]. Optics & Laser Technology, 167, 109721(2023).
[3] LIANG Y, LIAO Z Y, ZHANG L L et al. A review on coatings deposited by extreme high-speed laser cladding: processes, materials, and properties[J]. Optics & Laser Technology, 164, 109472(2023).
[4] KAWAHITO Y, WANG H, KATAYAMA S et al. Ultra high power (100 kw) fiber laser welding of steel[J]. Optics Letters, 43, 4667-4670(2018).
[5] WEN Qiuling, WEI Xinyu, WANG Hualu et al. Characteristics and mechanism of cvd single crystal diamond processed by picosecond laser[J]. Acta Photonica Sinica, 50, 0650113(2021).
[6] SHANG Peijin, BAI Lu, WANG Shiyu et al. Research progress on thermal effect of ld pumped solid state laser[J]. Optics & Laser Technology, 157, 108640(2023).
[7] LIMPERT J, ROESER F, SCHREIBER T et al. High-power ultrafast fiber laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 233-244(2006).
[8] LI Mi, HU Hao, GAO Qingsong et al. Dual concentration doped Nd: YAG composite ceramic slab laser with high power[J]. Acta Optica Sinica, 37, 0514003(2017).
[9] GIESEN A, HÜGEL H, VOSS A et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 58, 365-372(1994).
[10] WANG Hailin, DONG Jing, LIU Heyan et al. Research progress of high-power ultrafast thin-disk laser technology (invited)[J]. Acta Photonica Sinica, 50, 0850208(2021).
[11] GAN Qijun, JIANG Benxue, ZHANG Pande et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 54, 010003(2017).
[12] VOSS A, BRAUCH U, WITTIG K et al. Efficient high-power-diode-pumped thin-disk Yb∶YAG-laser[C], 2426, 501-508(1995).
[13] GIESEN A. Thin-disk solid state lasers[C], 5620, 112-127(2004).
[14] SCHUHMANN K, HÄNSCH T W, KIRCH K et al. Thin-disk laser pump schemes for large number of passes and moderate pump source quality.[J]. Applied Optics, 54, 9400-9408(2015).
[15] KILLI A, ZAWISCHA I, SUTTER D et al. Current status and development trends of disk laser technology[C], 6871, 68710L(2008).
[16] GOTTWALD T, KUHN V, SCHAD S et al. Recent developments in high power thin disk lasers at trumpf laser[C], 8898, 88980P(2013).
[17] SVEN-SILVIUS S, TINA G, VINCENT K et al. Recent development of disk lasers at trumpf[C], 9726, 972615(2016).
[18] PAPASTATHOPOULOS E, BAUMANN F, BOCKSROCKER O et al. High-power high-brightness disk lasers for advanced applications[C], 11664, 116640M(2021).
[19] VRETENAR N, CARSON T, NEWELL T C et al. Yb∶YAG thin-disk laser performance at room and cryogenic temperatures[C], 8235, 82350S(2012).
[20] ALABBADI A, LARIONOV M, FINK F. High-power YB∶YAG thin-disk laser with 80 % efficiency pumped at the zero-phonon line[J]. Optics Letters, 47, 202-205(2022).
[21] WANG Chunhua, WANG Weimin, MA Yi et al. Design and experiment of multi-pass pump system for Yb∶YAG thin-disk laser[J]. High Power Laser and Particle Beams, 23, 1229-1232(2011).
[22] HUANG Yan, ZHU Xiao, ZHU Guangzhi et al. A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability[J]. Optics Express, 23, 4605-4613(2015).
[24] DAI Longhui, LIU Rui, GONG Faquan et al. Resonators with a continuously variable output coupling rate to enhance output performance of YB:YAG thin-disk lasers[J]. Optics Express, 30, 40739-40749(2022).
[25] WANG Xu, CHENG Guanghua, SUN Zhe. Research of LD-pumped passively q-switched Yb∶YAG thin disk laser[J]. Acta Photonica Sinica, 45, 314009(2016).
[26] BAI Chuan, TIAN Wenlong, WANG Geyang et al. Progress on Yb-Doped all-solid-state femtosecond laser amplifier with high repetition rate[J]. Chinese Journal of Lasers, 48, 0501005(2021).
[27] WEICHELT B, VOSS A, AHMED M A et al. Enhanced performance of thin-disk lasers by pumping into the zero-phonon line[J]. Optics Letters, 37, 3045-3047(2012).
[28] SMRZ M, MIURA T, CHYLA M et al. Suppression of nonlinear phonon relaxation in YB:YAG thin disk via zero phonon line pumping[J]. Optics Letters, 39, 4919-4922(2014).
[29] ZHUANG W Z, CHEN Yifan, SU K W et al. Performance enhancement of sub-nanosecond diode-pumped passively q-switched YB:YAG microchip laser with diamond surface cooling[J]. Optics Express, 20, 22602-22608(2012).
[30] DAI Longhui, LIU Rui, LI Xiang et al. High-efficiency, high-repetition-rate cavity-dumped q-switched YB:YAG thin-disk laser based on a 72-pass pump module[J]. Optics Express, 30, 19629-19638(2022).
[31] SCHUHMANN K, HANSCH T W, KIRCH K et al. Thin-disk laser pump schemes for large number of passes and moderate pump source quality[J]. Applied Optics, 54, 9400-9408(2015).
[32] RYDBERG S, ENGHOLM M. Charge transfer processes and ultraviolet induced absorption in Yb∶YAG single crystal laser materials[J]. Journal of Applied Physics, 113, 223510(2013).
Get Citation
Copy Citation Text
Yubo GAO, Sizhi XU, Yewang CHEN, Minqiu LIU, Deqin OUYANG, Xu WU, Junzhan CHEN, Junqing ZHAO, Chunyu GUO, Xing LIU, Qitao LV, Shuangchen RUAN. High Efficiency Yb∶YAG Thin Disk Laser Based on Zero Phonon Line Pumping[J]. Acta Photonica Sinica, 2024, 53(2): 0214002
Category:
Received: Aug. 22, 2023
Accepted: Oct. 20, 2023
Published Online: Mar. 28, 2024
The Author Email: Xing LIU (liuxingstart123@163.com), Shuangchen RUAN (scruan@sztu.edu.cn)