Semiconductor Optoelectronics, Volume. 44, Issue 1, 32(2023)
Compact Photoelectronic Reversible Logic Gate Based on Nano-film Lithium Niobate Hybrid Waveguide
[1] [1] Shastri B J, Tait A N, De Lima T F, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 2021, 15(2): 102-114.
[2] [2] Paesani S, Ding Y, Santagati R, et al. Generation and sampling of quantum states of light in a silicon chip[J]. Nature Physics, 2019, 15(9): 925-929.
[3] [3] Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits[J]. Nature Photonics, 2020, 14(5): 285-298.
[4] [4] Wetzstein G, Ozcan A, Gigan S, et al. Inference in artificial intelligence with deep optics and photonics[J]. Nature, 2020, 588(7836): 39-47.
[7] [7] Paraiso T K, Roger T, Marangon D G, et al. A photonic integrated quantum secure communication system[J]. Nature Photonics, 2021, 15(11): 850-856.
[9] [9] Chen Z, Wang G D, Wang X. Physical mechanism and response characteristics of unsaturated optical stopping based amorphous arsenic sulfide thin-film waveguides[J]. IEEE Photonics J., 2019, 11(1): 6100910.
[10] [10] Chen Z, Wang G D, Wang X, et al. Moving toward optoelectronic logic circuits for visible light: a chalcogenide glass single-mode single-polarization optical waveguide switch[J]. Appl. Opt., 2017, 56(5): 1405-1412.
[13] [13] Chattopadhyay T. All-optical modified Fredkin gate[J]. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 585-592.
[14] [14] Maity G K, Roy J N, Maity S P. Mach-Zehnder interferometer based all-optical Peres gate[C]// Adv. in Computing and Communications (ACC), 2011, Communications in Computer and Information Science, 2011: 192.
[15] [15] Taraphdar C, Chattopadhyay T, Roy J N. Mach-Zehnder interferometer-based all-optical reversible logic gate[J]. Optics & Laser Technol., 2015, 72: 33-41.
[16] [16] Lala P K, Parkerson J P, Chakraborty P. Adder designs using reversible logic gates[J]. WSEAS Trans. on Circuits and Systems, 2010, 9(4/6): 369-378.
[17] [17] Bordoloi K, Theresal T, Prince S. Design of all optical reversible logic gates[C]// 2014 Inter. Conf. on Communications and Signal Processing (ICCSP), 2014: 1583-1588.
[18] [18] Kostinski N, Fok M P, Prucnal P R. Experimental demonstration of an all-optical fiber-based Fredkin gate[J]. Opt. Lett., 2009, 34(18): 2766-2768.
[19] [19] Kotiyal S, Thapliyal H, Ranganathan N. Mach-Zehnder interferometer based all optical reversible NOR gates[C]// 2012 IEEE Computer Society Annual Symposium on VLSI, 2012: 209-212.
[20] [20] Landauer R. Irreversibility and heat generation in the computing process[J]. IBM J. Res. Dev., 1961, 5: 183-191.
[21] [21] Bennett C. Logical reversibility of computation[J]. IBM J. Res. Dev., 1973, 17: 525-532.
[22] [22] Yu L, Yin Y, Shi Y, et al. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters[J]. Optica, 2016, 3: 159-166.
[23] [23] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.
[24] [24] Sun D, Zhang Y, Wang D, et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light Sci. Appl., 2020, 9: 197.
[26] [26] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13: 359-364.
[27] [27] Rao A, Patil A, Rabiei P et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50GHz[J]. Opt. Lett., 2016, 41(24): 5700-5703.
Get Citation
Copy Citation Text
CHEN Zhi. Compact Photoelectronic Reversible Logic Gate Based on Nano-film Lithium Niobate Hybrid Waveguide[J]. Semiconductor Optoelectronics, 2023, 44(1): 32
Category:
Received: Oct. 22, 2022
Accepted: --
Published Online: Apr. 7, 2023
The Author Email: CHEN Zhi (chenzhi@stiei.edu.cn)