Microelectronics, Volume. 52, Issue 5, 853(2022)
Review of Frequency Self-Tuning Technology for Ambient Kinetic Energy Harvester
[1] [1] HANSON S, SEOK M, LIN Y, et al. A low-voltage processor for sensing applications with picowatt standby mode [J]. IEEE J Sol Sta Circ, 2009, 44(4): 1145-1155.
[2] [2] QIAN Z, KANG S, RAJARAM V, et al. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches [J]. Nature Nanotechnol, 2017, 12(10): 969-973.
[3] [3] JEONG S, FOO Z, LEE Y, et al. A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes [J]. IEEE J Sol Sta Circ, 2014, 49(8): 1682-1693.
[4] [4] SHAIKH F K, ZEADALLY S. Energy harvesting in wireless sensor networks: a comprehensive review [J]. Renewable Sustainable Energy Rev, 2016, 55: 1041- 1054.
[5] [5] LI S C, XU L D, ZHAO S S. The internet of things: a survey [J]. Inform Syst Front, 2015, 17(2): 243-259.
[6] [6] LI S C, XU L D, ZHAO S. 5G internet of things: a survey [J]. J Indus Inform Integr, 2018, 10: 1-9.
[7] [7] AZAM A, AHMED A, KAMRAN M S, et al. Knowledge structuring for enhancing mechanical energy harvesting (MEH): an in-depth review from 2000 to 2020 using citespace [J]. Renewable Sustainable Energy Rev, 2021, 150: 111460.
[8] [8] WILLIAMS C B, YATES R B. Analysis of a micro-electric generator for microsystems [J]. Sensors & Actuators a-Phys, 1996, 52(1-3): 8-11.
[9] [9] ZOU H X, ZHAO L C, GAO Q H, et al. Mechanical modulations for enhancing energy harvesting: principles, methods and applications [J]. Appl Energy, 2019, 255: 113871.
[10] [10] MAAMER B, BOUGHAMOURA A, FATH EL-BAB A M R, et al. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes [J]. Energy Convers & Managem, 2019, 199: 111973.
[11] [11] YILDIRIM T, GHAYESH M H, LI W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters [J]. Renewable Sustainable Energy Rev, 2017, 71: 435-449.
[12] [12] LIU J Q, FANG H B, XU Z Y, et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting [J]. Microelec J, 2008, 39(5): 802-806.
[13] [13] TOYABUR R M, SALAUDDIN M, CHO H, et al. A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low- frequency ambient vibrations [J]. Energy Convers & Managem, 2018, 168: 454-466.
[14] [14] PAUL K, AMANN A, ROY S. Tapered nonlinear vibration energy harvester for powering Internet of Things [J]. Appl Energy, 2021, 283: 116267.
[15] [15] YU N, MA H, WU C, et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester [J]. Mechan Syst & Signal Process, 2021, 156: 107608.
[16] [16] MEI X, ZHOU S, YANG Z, et al. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells [J]. Mechan Syst & Signal Process, 2021, 148: 107167.
[17] [17] ZHOU K, DAI H L, ABDELKEFI A, et al. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers [J]. Int J Mechan Sci, 2020, 166: 105233.
[18] [18] SHIN Y H, CHOI J, KIM S J, et al. Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting [J]. Nano Energy, 2020, 77: 104986.
[19] [19] DONG L, CLOSSON A B, JIN C, et al. Vibration‐energy‐harvesting system: transduction mechanisms, frequency tuning techniques, and biomechanical applications [J]. Advan Mater Technol, 2019, 4(10): 1900177.
[20] [20] JO S E, KIM M S, KIM Y J. A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting [J]. Smart Mater & Struct, 2012, 21(1): 15007.
[21] [21] FANG M W, LIAN Q W, WANG J W, et al. Self-adaptive piezoelectric ceramic vibration system based on asymmetric piezoelectric cantilever for energy harvesting [J]. Int J Appl Ceramic Technol, 2018, 15(5): 1268-1276.
[22] [22] BOUDAOUD A, COUDER Y, BEN AMAR M. A self-adaptative oscillator [J]. Europ Phys J B - Condensed Matter and Complex Syst, 1999, 9(1): 159-165.
[23] [23] MILLER L M, PILLATSCH P, HALVORSEN E, et al. Experimental passive self-tuning behavior of a beam resonator with sliding proof mass [J]. J Sound & Vibrat, 2013, 332(26): 7142-7152.
[24] [24] KRACK M, ABOULFOTOH N, TWIEFEL J, et al. Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass [J]. Archive Appl Mechan, 2017, 87(4): 699-720.
[25] [25] LAN C, CHEN Z, HU G, et al. Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam [J]. Mechan Syst & Signal Process, 2021, 156: 107672.
[26] [26] STAAF L G H, KOHLER E, FOLKOW P D, et al. Smart design piezoelectric energy harvester with self-tuning [J]. J Phys: Conf Series, 2017, 922: 12007.
[27] [27] STAAF L G H, SMITH A D, KOHLER E, et al. Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester [J]. J Sound & Vibrat, 2018, 420: 165-173.
[28] [28] STAAF L G H, SMITH A D, LUNDGREN P, et al. Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers [J]. Int J Mechan Sci, 2019, 150: 1-11.
[29] [29] SOMKUWAR R, CHANDWANI J, DESHMUKH R. Wideband auto-tunable vibration energy harvester using change in centre of gravity [J]. Microsyst Technol, 2018, 24(7): 3033-3044.
[30] [30] CHANDWANI J, SOMKUWAR R, DESHMUKH R. Multi-band piezoelectric vibration energy harvester for low-frequency applications [J]. Microsyst Technol, 2019, 25(10): 3867-3877.
[31] [31] CHEN L H, XUE J T, PAN S Q, et al. Study on cantilever piezoelectric energy harvester with tunable function [J]. Smart Mater & Struct, 2020, 29(7): 075001.
[32] [32] JACKSON N, STAM F, OLSZEWSKI O Z, et al. Broadening the bandwidth of piezoelectric energy harvesters using liquid filled mass [J]. Procedia Engineering, 2015, 120: 328-332.
[33] [33] JACKSON N, STAM F, OLSZEWSKI O Z, et al. Widening the bandwidth of vibration energy harvesters using a liquid-based non-uniform load distribution [J]. Sensors & Actuators a-Phys, 2016, 246: 170-179.
[34] [34] JACKSON N, STAM F. Sloshing liquid-metal mass for widening the bandwidth of a vibration energy harvester [J]. Sensors & Actuators a-Phys, 2018, 284: 17-21.
[35] [35] LIU D H, LI H S, FENG H, et al. A multi-frequency piezoelectric vibration energy harvester with liquid filled container as the proof mass [J]. Appl Phys Lett, 2019, 114, (21): 213902.
[36] [36] SOMKUWAR R, CHANDWANI J, DESHMUKH R. Bandwidth widening of piezoelectric energy harvester by free moving cylinders in liquid medium [J]. Microsyst Technol, 2021, 27(5): 1959-1970.
[37] [37] FU H, MEI X, YURCHENKO D, et al. Rotational energy harvesting for self-powered sensing [J]. Joule, 2021, 5(5): 1074-1118.
[38] [38] GU L, LIVERMORE C. Passive self-tuning energy harvester for extracting energy from rotational motion [J]. Appl Phys Lett, 2010, 97(8): 81904.
[39] [39] GU L, LIVERMORE C. Compact passively self-tuning energy harvesting for rotating applications [J]. Smart Mater & Struct, 2012, 21(1): 15002.
[41] [41] RUI X B, ZENG Z M, ZHANG Y, et al. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels [J]. IEEE Tran Vehicular Techno, 2020, 69(2): 1440-1451.
[42] [42] WANG Y J, CHUANG T Y, YU J H. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency [J]. Smart Mater & Struct, 2017, 26(9): 95037.
[43] [43] WANG Y J, CHUANG T Y, LEE C. Resonant frequency self-tunable piezoelectric cantilevers for energy harvesting and disturbing torque absorbing [J]. Sensors & Actuators a-Phys, 2019, 285: 25-34.
[44] [44] HSU J, TSENG C, CHEN Y. Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion [J]. Smart Mater & Struct, 2014, 23(7): 75013.
[45] [45] LIU T. Passively tuning harvesting beam length to achieve very high harvesting bandwidth in rotating applications [C]// Proceed Power MEMS. 2012: 492-495.
[46] [46] ALEVRAS P, THEODOSSIADES S. Vibration energy harvester for variable speed rotor applications using passively self-tuned beams [J]. J Sound & Vibrat, 2019, 444: 176-196.
[47] [47] DENG L, JIANG J, ZHOU L, et al. Design and simulation of a frequency self-tuning vibration energy harvester for rotational applications [J]. Microsyst Technolol, 2021, 27(7): 2857-2862.
[48] [48] DENG L, JIANG J, ZHANG D, et al. Design and modeling a frequency self-tuning vibration energy harvester for rotational applications [J]. Energy, 2021, 235: 121414.
[49] [49] YU L, TANG L, XIONG L, et al. A passive self-tuning nonlinear resonator with beam-slider structure [C]// Active and Passive Smart Struct and Integr Syst XIII. Denver, CO, USA. 2019: 109670.
[50] [50] YU L, TANG L, YANG T. Piezoelectric passive self- tuning energy harvester based on a beam-slider structure [J]. J Sound & Vibrat, 2020, 22(489): 115689.
[51] [51] BUKHARI M, MALLA A, KIM H, et al. On a self-tuning sliding-mass electromagnetic energy harvester [J]. Aip Advan, 2020, 10(9): 95227.
[52] [52] MEI X, ZHOU S, YANG Z, et al. A passively self-tuning nonlinear energy harvester in rotational motion: theoretical and experimental investigation [J]. Smart Mater & Struct, 2020, 29(4): 45033.ADDINNE.Bib
Get Citation
Copy Citation Text
DENG Licheng, JIANG Jian, FAN Jiangtao, SUN Yinheng, YANG Hao, LU Siyu, FANG Yuming. Review of Frequency Self-Tuning Technology for Ambient Kinetic Energy Harvester[J]. Microelectronics, 2022, 52(5): 853
Category:
Received: Oct. 18, 2021
Accepted: --
Published Online: Jan. 18, 2023
The Author Email: