Acta Photonica Sinica, Volume. 42, Issue 8, 883(2013)
An Anomaly Detection Method for Hyperspectral Imagery in Kernel Feature Space Based on Robust Analysis
[1] [1] STEIN D W J, BEAVEN S G, HOFF L E, et al. Anomaly detection from hyperspectral imagery[J]. Signal Processing Magazine, IEEE, 2002, 19(1): 58-69.
[2] [2] MANOLAKIS D, SHAW G. Detection algorithms for hyperspectral imaging applications[J]. Signal Processing Magazine, IEEE, 2002, 19(1): 29-43.
[3] [3] DU Bo, ZHANG Liangpei. Randomselectionbased anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1578-1589.
[5] [5] MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images[J]. Aerospace and Electronic Systems Magazine, IEEE, 2010, 25(7): 5-28.
[6] [6] REED I S, YU X. Adaptive multipleband CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
[9] [9] BILLOR N, HADI A S, VELLEMAN P F. BACON: blocked adaptive computationally efficient outlier nominators[J]. Computational Statistics & Data Analysis, 2000, 34(3): 279-298.
[10] [10] CARLOTTO M J. A clusterbased approach for detecting manmade objects and changes in imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 374-387.
[11] [11] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2282-2291.
[12] [12] WANG Ting, DU Bo, ZHANG Liangpei. Kernel orthogonal subspace projection for target detection give consideration to local information[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 200-203.
[13] [13] HEESUNG KWON, NASRABADI N M. Kernel RXalgorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397.
[14] [14] HEESUNG KWON, NASRABADI N M. Kernel orthogonal subspace projection for hyperspectral signal classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2952-2962.
[15] [15] HEESUNG KWON, NASRABADI N M. Kernel matched signal detectors for hyperspectral target detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[16] [16] HEESUNG KWON, NASRABADI N M. Kernel matched subspace detectors for hyperspectral target detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 178-194.
[17] [17] GURRAM P, HEESUNG KWON, HAN T. Sparse kernelbased hyperspectral anomaly detection[J]. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 943-947.
[19] [19] EDISANTER L, INGRAM J. Hyperspectral anomaly detection based on minimum generalized variance method[C]. SPIE, 2008, 6966: 1-7.
[20] [20] HIRSH R G. A performance charcterization of kernelbased algorithms for anomaly detection in hyperspectral imagery[D]. Maryland: University of Maryland, 2007.
[21] [21] GU Yanfeng, LIU Ying, ZHANG Ye. A selective KPCA algorithm based on highorder statistics for anomaly detection in hyperspectral imagery[J]. Geoscience and Remote Sensing Letters, IEEE, 2008, 5(1): 43-47.
Get Citation
Copy Citation Text
ZHAO Ruia, DU Bob, ZHANG Liangpeia. An Anomaly Detection Method for Hyperspectral Imagery in Kernel Feature Space Based on Robust Analysis[J]. Acta Photonica Sinica, 2013, 42(8): 883
Received: Feb. 25, 2013
Accepted: --
Published Online: Sep. 25, 2013
The Author Email: Ruia ZHAO (759572276@qq.com)