Acta Photonica Sinica, Volume. 42, Issue 8, 883(2013)

An Anomaly Detection Method for Hyperspectral Imagery in Kernel Feature Space Based on Robust Analysis

ZHAO Ruia1,*... DU Bob2 and ZHANG Liangpeia1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(21)

    [1] [1] STEIN D W J, BEAVEN S G, HOFF L E, et al. Anomaly detection from hyperspectral imagery[J]. Signal Processing Magazine, IEEE, 2002, 19(1): 58-69.

    [2] [2] MANOLAKIS D, SHAW G. Detection algorithms for hyperspectral imaging applications[J]. Signal Processing Magazine, IEEE, 2002, 19(1): 29-43.

    [3] [3] DU Bo, ZHANG Liangpei. Randomselectionbased anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1578-1589.

    [5] [5] MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images[J]. Aerospace and Electronic Systems Magazine, IEEE, 2010, 25(7): 5-28.

    [6] [6] REED I S, YU X. Adaptive multipleband CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.

    [9] [9] BILLOR N, HADI A S, VELLEMAN P F. BACON: blocked adaptive computationally efficient outlier nominators[J]. Computational Statistics & Data Analysis, 2000, 34(3): 279-298.

    [10] [10] CARLOTTO M J. A clusterbased approach for detecting manmade objects and changes in imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 374-387.

    [11] [11] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2282-2291.

    [12] [12] WANG Ting, DU Bo, ZHANG Liangpei. Kernel orthogonal subspace projection for target detection give consideration to local information[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 200-203.

    [13] [13] HEESUNG KWON, NASRABADI N M. Kernel RXalgorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397.

    [14] [14] HEESUNG KWON, NASRABADI N M. Kernel orthogonal subspace projection for hyperspectral signal classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2952-2962.

    [15] [15] HEESUNG KWON, NASRABADI N M. Kernel matched signal detectors for hyperspectral target detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

    [16] [16] HEESUNG KWON, NASRABADI N M. Kernel matched subspace detectors for hyperspectral target detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 178-194.

    [17] [17] GURRAM P, HEESUNG KWON, HAN T. Sparse kernelbased hyperspectral anomaly detection[J]. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 943-947.

    [19] [19] EDISANTER L, INGRAM J. Hyperspectral anomaly detection based on minimum generalized variance method[C]. SPIE, 2008, 6966: 1-7.

    [20] [20] HIRSH R G. A performance charcterization of kernelbased algorithms for anomaly detection in hyperspectral imagery[D]. Maryland: University of Maryland, 2007.

    [21] [21] GU Yanfeng, LIU Ying, ZHANG Ye. A selective KPCA algorithm based on highorder statistics for anomaly detection in hyperspectral imagery[J]. Geoscience and Remote Sensing Letters, IEEE, 2008, 5(1): 43-47.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Ruia, DU Bob, ZHANG Liangpeia. An Anomaly Detection Method for Hyperspectral Imagery in Kernel Feature Space Based on Robust Analysis[J]. Acta Photonica Sinica, 2013, 42(8): 883

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 25, 2013

    Accepted: --

    Published Online: Sep. 25, 2013

    The Author Email: Ruia ZHAO (759572276@qq.com)

    DOI:10.3788/gzxb20134208.0883

    Topics