Matter and Radiation at Extremes, Volume. 6, Issue 6, 065901(2021)

Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation

Hiroki Morita1... Tadashi Ogitsu2, Frank R. Graziani2 and Shinsuke Fujioka1 |Show fewer author(s)
Author Affiliations
  • 1Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
  • 2Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
  • show less
    References(52)

    [1] D. H.Barnak, A.Bhattacharjee, G.Fiksel, R. K.Follett, W.Fox, K.Germaschewski, D.Haberberger, S. X.Hu, D. B.Schaeffer. High-Mach number, laser-driven magnetized collisionless shocks. Phys. Plasmas, 24, 122702(2017).

    [2] N.Alexander, A.Bhattacharjee, P. T.Campbell, H.Chen, V.Chvykov, E.Del Rio, C. F.Dong, P.Fitzsimmons, W.Fox, B.Hou, K.Krushelnick, A.Maksimchuk, A.McKelvey, C.Mileham, J.Nees, P. M.Nilson, A. E.Raymond, C.Stoeckl, A. G.Thomas, M. S.Wei, L.Willingale, V.Yanovsky, C.Zulick. Relativistic-electron-driven magnetic reconnection in the laboratory. Phys. Rev. E, 98, 043207(2018).

    [3] B. G.Logan, L. J.Perkins, C. J.Werner, G. B.Zimmerman. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas, 20, 072708(2013).

    [4] A.Ikeda, Y. H.Matsuda, D.Nakamura, H.Sawabe, S.Takeyama. Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum., 89, 095106(2018).

    [5] R.Betti, P. Y.Chang, J. A.Frenje, O. V.Gotchev, J. P.Knauer, C. K.Li, M. J.-E.Manuel, D. D.Meyerhofer, R. D.Petrasso, O.Polomarov, J. R.Rygg, F. H.Séguin. Compressing magnetic fields with high-energy lasers. Phys. Plasmas, 17, 056318(2010).

    [6] H.Azechi, S.Fujioka, Y.Hironaka, K.Ishihara, T.Johzaki, H.Nakashima, H.Nishimura, K.Shigemori, H.Shiraga, A.Sunahara, T.Watanabe, N.Yamamoto, Z.Zhang. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep., 3, 1170(2013).

    [7] Z.Fang, B.Han, N.Hua, W.Jiang, Y.Li, G.Liang, C.Wang, F.Wang, H.Wei, D.Yuan, J.Zhang, Z.Zhang, G.Zhao, J.Zhong, B.Zhu, B.Zhu, J.Zhu. Generation of strong magnetic fields with a laser-driven coil. High Power Laser Sci. Eng., 6, e38(2018).

    [8] S.Fujioka, Y.Hara, S.Kondo, Y. F.Li, Y. T.Li, G. Y.Liang, X. X.Pei, Y.Sakawa, T.Sano, F. L.Wang, H. G.Wei, K.Zhang, Z.Zhang, G.Zhao, J. Y.Zhong, B. J.Zhu. Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target. Phys. Plasmas, 23, 032125(2016).

    [9] Y.Arikawa, H.Azechi, S.Fujioka, S.Kojima, Y.Kuramitsu, K. F. F.Law, S. H.Lee, K.Matsuo, T.Morita, H.Nagatomo, P.Nicolai, S.Sakata, Y.Sakawa, T.Sano, Z.Zhang. Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field. Phys. Rev. E, 95, 053204(2017).

    [10] T.Morita. Topological investigation of laser ion acceleration. Plasma Phys. Controlled Fusion, 62, 105003(2020).

    [11] K. U.Akli, R. J.Clarke, J. R.Davies, R. R.Freeman, J. S.Green, H.Habara, D. S.Hey, M. H.Key, R.Kodama, K.Krushelnick, K. L.Lancaster, C. D.Murphy, M.Nakatsutsumi, P. A.Norreys, P.Simpson, R.Stephens, C.Stoeckl, T.Yabuuchi, M.Zepf. Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 ×1020 W cm−2. Phys. Rev. Lett., 98, 125002(2007).

    [12] K. U.Akli, H.Azechi, F. N.Beg, C.Bellei, J. R.Davies, R. G.Evans, R. R.Freeman, J. S.Green, H.Habara, R.Heathcote, M. H.Key, J. A.King, K. L.Lancaster, N. C.Lopes, T.Ma, A. J.MacKinnon, K.Markey, A.McPhee, Z.Najmudin, P.Nilson, P. A.Norreys, R.Onofrei, V. M.Ovchinnikov, R.Stephens, K.Takeda, K. A.Tanaka, T.Tanimoto, W.Theobald, L.Van Woerkom, J.Waugh, N. C.Woolsey, M.Zepf. Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett., 100, 015003-015004(2008).

    [13] H.-b.Cai, X. T.He, S.-p.Zhu. Effects of the imposed magnetic field on the production and transport of relativistic electron beams. Phys. Plasmas, 20, 072701(2013).

    [14] M.Bailly-Grandvaux, D.Batani, C.Bellei, R.Bouillaud, M.Chevrot, J. E.Cross, R.Crowston, S.Dorard, J.-L.Dubois, M.Ehret, P.Forestier-Colleoni, S.Fujioka, L.Giuffrida, G.Gregori, J. J.Honrubia, S.Hulin, S.Kojima, E.Loyez, J.-R.Marquès, A.Morace, P.Nicola?, M.Roth, S.Sakata, J. J.Santos, G.Schaumann, F.Serres, J.Servel, V. T.Tikhonchuk, N.Woolsey, Z.Zhang. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Commun., 9, 102(2018).

    [15] Y.Abe, Y.Arikawa, H.Azechi, M.Bailly-Grandvaux, S.Fujioka, M.Hata, Y.Iwasa, N.Iwata, T.Johzaki, J.Kawanaka, H.Kishimoto, R.Kodama, S.Kojima, K. F. F.Law, S.Lee, K.Matsuo, K.Mima, N.Miyanaga, A.Morace, H.Morita, H.Nagatomo, M.Nakai, Y.Nakata, H.Nishimura, T.Norimatsu, T.Ozaki, H.Sakagami, S.Sakata, J. J.Santos, H.Sawada, Y.Sentoku, H.Shiraga, T.Shiroto, A.Sunahara, A.Syuhada, S.Tokita, K.Yamanoi, A.Yao, A.Yogo. Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nat. Commun., 9, 3937(2018).

    [16] Y.Abe, Y.Arikawa, H.Azechi, S.Fujioka, M.Hata, N.Higashi, Y.Iwasa, N.Iwata, T.Johzaki, J.Kawanaka, R.Kodama, S.Kojima, K. F. F.Law, S.Lee, K.Matsuo, K.Mima, A.Morace, H.Morita, H.Nagatomo, M.Nakai, Y.Nakata, T.Norimatsu, Y.Ochiai, T.Ozaki, H.Sakagami, S.Sakata, T.Sano, H.Sawada, Y.Sentoku, H.Shiraga, A.Sunahara, S.Tokita, K.Yamanoi, A.Yogo. Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse. Phys. Rev. Lett., 124, 035001(2020).

    [17] K. S.Anderson, F. N.Beg, R.Epstein, G.Fiksel, E. M.Giraldez, V. Y.Glebov, H.Habara, S.Ivancic, L. C.Jarrott, F. J.Marshall, G.McKiernan, H. S.McLean, C.Mileham, P. M.Nilson, P. K.Patel, F.Pérez, T. C.Sangster, J. J.Santos, H.Sawada, A.Shvydky, A. A.Solodov, R. B.Stephens, C.Stoeckl, W.Theobald, M. S.Wei. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion. Nat. Commun., 5, 5785(2014).

    [18] F. N.Beg, R.Betti, H.Chen, J.Delettrez, T.D?ppner, E. M.Giraldez, V. Y.Glebov, H.Habara, T.Iwawaki, L. C.Jarrott, M. H.Key, R. W.Luo, F. J.Marshall, C.McGuffey, H. S.Mclean, C.Mileham, P. K.Patel, B.Qiao, J. J.Santos, H.Sawada, A. A.Solodov, R. B.Stephens, C.Stoeckl, W.Theobald, M. S.Wei, T.Yabuuchi. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets. Nat. Phys., 12, 499-504(2016).

    [19] Y.Arikawa, H.Azechi, S.Fujioka, H.Morita, A.Sunahara. Numerical analysis of pulsed magnetic field diffusion dynamics in gold cone target. Phys. Plasmas, 25, 094505(2018).

    [20] Q.Chen, Z.Fu, L.Jia, X.Sun. Electrical conductivity of warm dense tungsten. High Energy Density Phys., 9, 781-786(2013).

    [21] S.Fujioka, C. S.Goyon, K. F. F.Law, J. D.Moody, H.Morita, B. B.Pollock, G. J.Williams. Dynamics of laser-generated magnetic fields using long laser pulses. Phys. Rev. E, 103, 033201(2021).

    [22] A. D.Ash, D. M.Chambers, C.Courtois, R. A. D.Grundy, N. C.Woolsey. Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys., 98, 054913(2005).

    [23] G.Fiksel, W.Fox, L.Gao, H.Ji. A simple model for estimating a magnetic field in laser-driven coils. Appl. Phys. Lett., 109, 134103(2016).

    [24] M.Bailly-Grandvaux, A.Poyé, J. J.Santos, V. T.Tikhonchuk. Quasi-stationary magnetic field generation with a laser-driven capacitor-coil assembly. Phys. Rev. E, 96, 023202(2017).

    [25] Y.Arikawa, H.Azechi, M.Bailly-Grandvaux, C.Bellei, S.Fujioka, S.Kojima, K.Kondo, K. F. F.Law, S.Lee, K.Matsuo, A.Morace, S.Sakata, J. J.Santos, X.Vaisseau, A.Yogo, Z.Zhang. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett., 108, 091104(2016).

    [26] J. D.Bude, C. W.Carr, C.Goyon, D. A.Mariscal, J. D.Moody, M. A.Norton, S.Patankar, B. B.Pollock, A. M.Rubenchik, G. F.Swadling, V. T.Tikhonchuk, E. R.Tubman, G. J.Williams. Laser intensity scaling of the magnetic field from a laser-driven coil target. J. Appl. Phys., 127, 083302(2020).

    [27] L. M.Goldman, R. L.Keck, M. C.Richardson, W.Seka, K.Tanaka. Observations of high-energy electron distributions in laser plasmas. Phys. Fluids, 27, 2762(1984).

    [28] H. G.Ahlstrom, R. A.Haas, J. F.Holzrichter, K. R.Manes. Light-plasma interaction studies with high-power glass laser. J. Opt. Soc. Am., 67, 717-726(1977).

    [29] D. W.Forslund, J. M.Kindel, K.Lee. Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett., 39, 284-287(1977).

    [30] R.Day, D.Gerke, D.Lier, W.Priedhorsky. Hard-x-ray measurements of 10.6-μm laser-irradiated targets. Phys. Rev. Lett., 47, 1661-1664(1981).

    [31] C.Andreas, S.Christian, F.Wolfgang. Review of FDTD time-stepping schemes for efficient simulation of electric conductive media. Microwave Opt. Technol. Lett., 25, 16-21(2000).

    [32] M.De Marco, S.Fujioka, L.Giuffrida, G.Korn, D.Margarone, F.Schillaci, Z.Zhang. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields. AIP Adv., 8, 025103(2018).

    [33] Y. T.Lee, R. M.More. An electron conductivity model for dense plasmas. Phys. Fluids, 27, 1273(1984).

    [34] M. P.Desjarlais. Practical improvements to the Lee-More conductivity near the metal-insulator transition. Contrib. Plasma Phys., 41, 267(2001).

    [35] G. K.Rajan, P. C.Sahu, M.Yousuf. High-pressure and high-temperature electrical resistivity of ferromagnetic transition metals: Nickel and iron. Phys. Rev. B, 34, 8086(1986).

    [36] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169(1996).

    [37] S.Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).

    [38] F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt, C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval, D.Caliste, M.C?té, F.Da Pieve, F.Dahm, M.Delaveau, M.Di Gennaro, B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi, Y.Gillet, X.Gonze, D. R.Hamann, L.He, F.Jollet, G.Jomard, J.Laflamme Janssen, S.Le Roux, A.Levitt, A.Lherbier, F.Liu, I.Luka?evi?, A.Martin, C.Martins, M. J. T.Oliveira, S.Poncé, Y.Pouillon, T.Rangel, G.-M.Rignanese, A. H.Romero, B.Rousseau, O.Rubel, A. A.Shukri, M.Stankovski, M.Torrent, M. J.Van Setten, B.Van Troeye, M. J.Verstraete, D.Waroquiers, J.Wiktor, B.Xu, A.Zhou, J. W.Zwanziger. Recent developments in the ABINIT software package. Comput. Phys. Commun., 205, 106-131(2016).

    [39] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).

    [40] D. J.Chadi, M. L.Cohen. Special points in the Brillouin zone. Phys. Rev. B, 8, 5747-5753(1973).

    [41] H. J.Monkhorst, J. D.Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188(1976).

    [42] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [43] D.Alfè, M. P.Desjarlais, M.Pozzo. Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B, 84, 054203(2011).

    [44] B.Bi, L.Cao, W.Fan, Y.Gu, D.Liu, H.Liu, L.Meng, L.Shan, C.Tian, W.Wang, L.Yang, Z.Yuan, F.Zhang, W.Zhou. Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime. Phys. Plasmas, 26, 122705(2019).

    [45] M. A.Bourham, J. M.Doster, J. D.Powell, M. R.Zaghloul. On the average electron-ion momentum transport cross-section in ideal and non-ideal plasmas. Phys. Lett. A, 262, 86-89(1999).

    [46] M. R.Zaghloul. A simple theoretical approach to calculate the electrical conductivity of nonideal copper plasma. Phys. Plasmas, 15, 042705(2008).

    [47] I. M.Bespalov, A. Y.Polishchuk. Method for calculating the degree of ionization and the thermal and electrical conductivity over a wide range of density and temperature. Sov. Tech. Phys. Lett., 15, 39-41(1989).

    [48] J. R. A.Kramida, Y.Ralchenko, N. A.Team(2018).

    [49] Z.Chen, B.Holst, S. E.Kirkwood, S.Mazevet, A.Ng, V.Recoules, M.Reid, V.Sametoglu, M.Torrent, Y. Y.Tsui. Ab initio model of optical properties of two-temperature warm dense matter. Phys. Rev. B, 90, 035121(2014).

    [50] Z.Chen, S.Hansen, A.Ng, V.Recoules, P.Sterne, Y. Y.Tsui, B.Wilson. dc conductivity of two-temperature warm dense gold. Phys. Rev. E, 94, 033213(2016).

    [51] R.Matula. Resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data, 8, 1147(1979).

    [52] S.Fujioka, T.Kikuchi, H.Nagatomo, T.Sasaki, A.Sunahara, K.Takahashi. A numerical study on the pulse duration dependence of a magnetic field generated using a laser-driven capacitor-coil target. High Energy Density Phys., 36, 100818(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hiroki Morita, Tadashi Ogitsu, Frank R. Graziani, Shinsuke Fujioka. Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation[J]. Matter and Radiation at Extremes, 2021, 6(6): 065901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Apr. 9, 2021

    Accepted: Aug. 7, 2021

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.1063/5.0053621

    Topics