Infrared and Laser Engineering, Volume. 50, Issue 8, 20210246(2021)
Active control of terahertz electromagnetically induced transparency metasurface using a graphene-metal hybrid structure
[1] Boiler K J, Imamoglu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).
[2] Wang Jing, Tian Hao. Terahertz flexible stretchable metasurface based on double resonance response[J]. Infrared and Laser Engineering, 49, 20201059(2020).
[3] Zhao Yun, Yang Yuanmu. Nonlinear metasurfaces: harmonic generation and ultrafast control[J]. Infrared and Laser Engineering, 49, 20201037(2020).
[4] Liu M, Yang Q, Xu Q, et al. Tailoring mode interference in plasmon-induced transparency metamaterials[J]. Journal of Physics D-Applied Physics, 51, 174005(2018).
[5] Li Q, Liu S, Zhang X, et al. Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators[J]. Optics Express, 28, 8792-8801(2020).
[6] Singh R, Al-Naib I, Yang Yuping, et al. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry[J]. Applied Physics Letters, 99, 201107(2011).
[7] Mal K, Islam K, Mondal S, et al. Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system[J]. Chinese Physics B, 29, 054211(2020).
[8] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).
[9] Cao Yanyan, Li Yue, Liu Yuanzhong, et al. Tunable electromagnetically induced transparency based on T-shaped graphene metamaterials[J]. Journal of Terahertz Science and Electronic Information Technology, 15, 192-197(2017).
[10] Chu Q, Song Z, Liu Q H. Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces[J]. Applied Physics Express, 11, 082203(2018).
[11] Tamayama Y, Kida Y. Tunable group delay in a doubly resonant metasurface composed of two dissimilar split-ring resonators[J]. Journal of the Optical Society of America B-Optical Physics, 36, 2694-2699(2019).
[12] Li Guangsen, Yan Fengping, Wang Wei, et al. Analysis of photosensitive tunable multiband electromagnetically induced transparency metamaterials[J]. Chinese Journal of Lasers, 46, 0114002(2019).
[13] Sun H, Tang Y, Hu Y, et al. Active formatting modulation of electromagnetically induced transparency in metamaterials[J]. Chinese Optics Letters, 18, 092402(2020).
[14] Zhou J, Zhang C, Liu Q, et al. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect[J]. Nanophotonics, 9, 2797-2807(2020).
[15] Du C, Zhou D, Guo H, et al. Active control scattering manipulation for realization of switchable EIT-like response metamaterial[J]. Optics Communications, 483, 126664(2021).
[16] Li Q, Tian Z, Zhang X, et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 6, 7082(2015).
Get Citation
Copy Citation Text
Quan Li, Shanshan Liu, Guangda Lu, Shuang Wang. Active control of terahertz electromagnetically induced transparency metasurface using a graphene-metal hybrid structure[J]. Infrared and Laser Engineering, 2021, 50(8): 20210246
Category: Terahertz
Received: Apr. 17, 2021
Accepted: --
Published Online: Nov. 2, 2021
The Author Email: