Acta Optica Sinica, Volume. 36, Issue 4, 417001(2016)

Raman Spectral Profiles of PHB Synthesis Influenced by Different Nitrogen Sources

Qin Zhaojun1,2、*, Tao Zhanhua1, Liao Wei3, Chen Zhenying2, Li Yongqing4, and Wang Guiwen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(38)

    [1] [1] Grage K, Jahns A C, Parlane N, et al.. Bacterial polyhydroxyalkanoate granules: Biogenesis, structure, and potential use as nano-/microbeads in biotechnological and biomedical applications[J]. Biomacromolecules, 2009, 10(4): 660-669.

    [2] [2] Keshavarz T, Roy I. Polyhydroxyalkanoates: Bioplastics with a green agenda[J]. Current opinion in microbiology, 2010, 13(3): 321-326.

    [3] [3] Chen G Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry[J]. Chemical Society Reviews, 2009, 38(8): 2434- 2446.

    [4] [4] Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16[J]. Journal of Molecular Microbiology and Biotechnology, 2009, 16(1-2): 38-52.

    [5] [5] Peoples O P, Sinskey A J. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16, identification and characterization of the PHB polymerase gene (phbC)[J]. The Journal of Biological Chemistry, 1989, 264(26): 15298-15303.

    [6] [6] Peplinski K, Ehrenreich A, D ring C, et al.. Genome-wide transcriptome analyses of the ′Knallgas′ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism[J]. Microbiology, 2010, 156(Pt 7): 2136-2152.

    [7] [7] Yoshie N, Goto Y, Sakurai M, et al.. Biosynthesis and n.m.r. studies of deuterated poly (3-hydroxybutyrate) produced by Alcaligenes eutrophus H16[J]. International Journal of Biological Macromolecules, 1992, 14(2): 81-86.

    [8] [8] Kobayashi T, Shiraki M, Abe T, et al.. Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly (3-hydroxybutyrate) depolymerase[J]. Journal of Bacteriology, 2003, 185(12): 3485-3490.

    [9] [9] Tian J, Sinskey A J, Stubbe J. Kinetic studies of polyhydroxybutyrate granuleformation in Wautersia eutropha H16 by transmission electron microscopy[J]. Journal of Bacteriology, 2005, 187(11): 3814-3824.

    [10] [10] Eggers J, Steinbuchel A. Poly (3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3- hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA[J]. Journal of Bacteriology, 2013, 195(14): 3213-3223.

    [11] [11] Batcha A F M, Prasad D M R, Khan M R, et al.. Biosynthesis of poly (3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source[J]. Bioprocess and Biosystems Engineering, 2013, 37(5): 943-951.

    [12] [12] Sznajder A, Pfeiffer D, Jendrossek D. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16[J]. Applied and Environmental Microbiology, 2015, 81(5): 1847-1858.

    [13] [13] Jarute G, Kainz A, Schroll G, et al.. On-line determination of the intracellular poly (β-hydroxybutyric acid) content in transformed Escherichia coli and glucose during PHB production using stopped-flow attenuated total reflection FT-IR spectrometry[J]. Analytical Chemistry, 2004, 76(21): 6353-6358.

    [14] [14] Khanna S, Srivastava A K. On-line characterization of physiological state in poly (β-hydroxybutyrate) production by Wautersia eutropha [J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 237-243.

    [15] [15] Brehm-Stecher B F, Johnson E A. Single-cell microbiology: Tools, technologies, and applications[J]. Microbiology and Molecular Biology Reviews, 2004, 68(3): 538-559.

    [16] [16] Peng L, Wang G, Liao W, et al.. Intracellular ethanol accumulation in yeast cells during aerobic fermentation: A Raman spectroscopic exploration[J]. Letters in Applied Microbiology, 2010, 51(6): 632-638.

    [17] [17] Li Zida, Lai Junzhuo, Liao Wei, et al.. Raman spectroscopic profile of ethanol fermentation in high gravity cassava starch brewing[J]. Acta Optica Sinica, 2012, 32(3): 0317001.

    [18] [18] Qin Zhaojun, Lai Junzhuo, Liu Bin, et al.. Raman spectroscopic analysis of ethanol fermentation at various initial pH levels[J]. Chinese J Lasers, 2013, 40(2): 0215001.

    [19] [19] Qin Zhaojun, Lai Junzhuo, Peng Lixin, et al.. Raman spectral profiles of promoting effects of organic nitrogen sources on ethanol fermentation using Saccharomyces cerevisiae[J]. Chinese Journal of Analytical Chemistry 2014, 42(10): 1471-1477.

    [20] [20] Chan J W. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells[J]. Journal of Biophotonics, 2013, 6(1): 36-48.

    [21] [21] Li M Q, Xu J, Romero-Gonzalez M E, et al.. Single cell Raman spectroscopy for cell sorting and imaging[J]. Current Opinion in Biotechnology, 2011, 23(1): 56-63.

    [22] [22] Gelder J D, Willemse-Erix D, Scholtes M J, et al.. Monitoring poly (3-hydroxybutyrate) production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy[J]. Analytical Chemistry, 2008, 80(6): 2155-2160.

    [23] [23] Hermelink A, St mmler M, Naumann D. Observation of content and heterogeneity of poly-β-hydroxybutyric acid (PHB) in Legionella bozemanii by vibrational spectroscopy[J]. Analyst, 2011, 136(6): 1129-1133.

    [24] [24] Qin Zhaojun, Peng Lixin, Zhu Libo, et al.. Raman spectral profiles of PHB synthesis by Cupriavidus necator H16 at different fructose levels[J]. Chinese J Lasers, 2015, 42(3): 0315003.

    [25] [25] Moritz T J, Taylor D S, Polage C R, et al.. Effect of cefazolin treatment on the nonresonant Raman signatures of the metabolic state of individual Escherichia coli cells[J]. Analytical Chemistry, 2010, 82(7): 2703-2710.

    [26] [26] De Gelder J, De Gussem K, Vandenabeele P, et al.. Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules--fatty acids[J]. Analytica Chimica Acta, 2007, 603(2): 167-175.

    [27] [27] De Gelder J, De Gussem K, Vandenabeele P, et al.. Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans[J]. Analytica Chimica Acta, 2007, 585(2): 234-240.

    [28] [28] Hall E K, Singer G A, P lzlM, et al.. Looking inside the box: Using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time[J]. ISME Journal, 2011, 5(2): 196-208.

    [29] [29] Zhao Haixia, Yuan Ding, He Yumin, et al.. Quantitative determination of Panax japonicus polysaccharide by DNS method[J]. Science and Technology of Food Industry, 2010, 31(6): 327-329.

    [30] [30] Xie C G, Dinno M A, Li Y Q. Near-infrared Raman spectroscopy of single optically trapped biological cells[J]. Optics Letters, 2002, 27 (27): 249-251.

    [32] [32] De Gelder J, De Gussem K, Vandenabeele P, et al.. Reference database of Raman spectra of biological molecules[J]. Journal of Raman Spectroscopy, 2007, 38(9): 1133-1147.

    [33] [33] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

    [34] [34] Furukawa T, Sato H, Murakami R, et al.. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly (hydroxybutyrate) /poly (l-lactic acid) blends[J]. Polymer, 2006, 47(9): 3132-3140.

    [35] [35] Izumi C M S, Temperini M L A. FT- Raman investigation of biodegradable polymers: Poly (3- hydroxybutyrate) and poly (3- hydroxybutyrate-co-3-hydroxyvalerate)[J]. Vibrational Spectroscopy, 2010, 54(2): 127-132.

    [36] [36] Maguire A, Vega Carrascal I, White L, et al.. Competitive evaluation of data mining algorithms for use in classification of leukocyte subtypes with Raman microspectroscopy[J]. Analyst, 2014, 140(7): 2473-2481.

    [37] [37] Nejadgholi I, Caytak H, Bolic M, et al.. Preprocessing and parameterizing bioimpedance spectroscopy measurements by singular value decomposition[J]. Physiological Measurement, 2015, 36(5): 983-999.

    [38] [38] Khmaladze A, Jasensky J, Price E, et al.. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis[J]. Applied Spectroscopy, 2014, 68(10): 1116- 1122.

    CLP Journals

    [1] Zheng Jiawen, Yang Tangwen. Classification Method of Biological Tissues Based on Raman Spectrum Features[J]. Laser & Optoelectronics Progress, 2017, 54(5): 53001

    [2] Tao Zhanhua, Ke Ke, Shi Deqiang, Zhu Libo. Effect of Environmental Factors on Staphyloxanthin Biosynthesis Based on Laser Tweezers Raman Spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123001

    Tools

    Get Citation

    Copy Citation Text

    Qin Zhaojun, Tao Zhanhua, Liao Wei, Chen Zhenying, Li Yongqing, Wang Guiwen. Raman Spectral Profiles of PHB Synthesis Influenced by Different Nitrogen Sources[J]. Acta Optica Sinica, 2016, 36(4): 417001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical optics and biotechnology

    Received: Nov. 11, 2015

    Accepted: --

    Published Online: Apr. 5, 2016

    The Author Email: Zhaojun Qin (qinzhaojun10@gmail.com)

    DOI:10.3788/aos201636.0417001

    Topics