Optics and Precision Engineering, Volume. 31, Issue 21, 3203(2023)
Multi-scale semantic OD/OC segmentation method based on attention perception
[1] [1] 于洋, 蒋沁, 曹国凡. 高度近视合并青光眼的临床诊断研究进展[J]. 国际眼科杂志, 2021, 21(6): 1008-1011. doi: 10.3980/j.issn.1672-5123.2021.6.14YUY, JIANGQ, CAOG F. Progress in the clinical diagnosis of high myopia combined with glaucoma [J]. International Eye Science, 2021,21 (6): 1008-1011. (in Chinese). doi: 10.3980/j.issn.1672-5123.2021.6.14
[2] M S SIDDIQUEE, N S PATHAN. Optic disc segmentation using superpixel based features and random forest classifier, 1-5(2019).
[3] Z U REHMAN, S S NAQVI, T M KHAN et al. Multi-parametric optic disc segmentation using superpixel based feature classification. Expert Systems With Applications, 120, 461-473(2019).
[4] R U SINGH, S GUJRAL. Assessment of disc damage likelihood scale (DDLS) for automated glaucoma diagnosis. Procedia Computer Science, 36, 490-497(2014).
[5] T YU, Y MA, W LI. Automatic localization and segmentation of optic disc in fundus image using morphology and level set, 195-199(2015).
[6] H Z FU, J CHENG, Y W XU et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37, 1597-1605(2018).
[7] B Y LIU, D R PAN, H SONG. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. BMC Medical Imaging, 21, 1-12(2021).
[8] [8] 于舒扬, 袁鑫, 郑秀娟. 融合感受野模块的卷积神经网络视杯视盘联合分割[J]. 中国生物医学工程学报, 2022, 41(2):167-176. doi: 10.3969/j.issn.0258-8021.2022.02.005YUSH Y, YUANX, ZHENGX J. Joint optic cup and disc segmentation using convolutional neural network with receptive field module[J]. Chinese Journal of Biomedical Engineering, 2022, 41(2):167-176.(in Chinese). doi: 10.3969/j.issn.0258-8021.2022.02.005
[9] H S ZHAO, J P SHI, X J QI et al. Pyramid scene parsing network, 21, 6230-6239(2017).
[10] O RONNEBERGER, P FISCHER, T BROX.
[11] A SEVASTOPOLSKY. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis, 27, 618-624(2017).
[12] [12] 黄文博, 黄钰翔, 姚远, 等. 融合注意力的ConvNeXt视网膜病变自动分级[J]. 光学 精密工程, 2022, 30(17):2147-2154. doi: 10.37188/OPE.20223017.2147HUANGW B, HUANGY X, YAOY, et al. Automatic classification of retinopathy with attention ConvNeXt[J]. Optics and Precision Engineering, 2022, 30(17):2147-2154.(in Chinese). doi: 10.37188/OPE.20223017.2147
[13] E J CARMONA, M RINCÓN, J GARCÍA-FEIJOÓ et al. Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43, 243-259(2008).
[14] F FUMERO, S ALAYON, J L SANCHEZ et al. RIM-ONE: an open retinal image database for optic nerve evaluation, 27, 1-6(2011).
[15] J SIVASWAMY, S R KRISHNADAS, G DATT JOSHI et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation, 53-56,(2014).
[16] K K MANINIS, J PONT-TUSET, P ARBELÁEZ et al. Deep Retinal Image Understanding. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, 140-148(2016).
[18] M Z ALOM, C YAKOPCIC, T M TAHA et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-net (R2U-net), 23, 228-233(2018).
[19] Y WEN, L T CHEN, L F QIAO et al. An efficient weakly-supervised learning method for optic disc segmentation, 16, 835-842(2020).
[20] A KIRILLOV, E MINTUN. Segment anything. arXiv e-prints.abs/2304(02643).
[22] B Q MA, Q YANG, H CUI et al. MEAL: meta enhanced entropy-driven adversarial learning for optic disc and cup segmentation, 3273-3276(5).
[23] S J WANG, L Q YU, X YANG et al. Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Transactions on Medical Imaging, 38, 2485-2495(2019).
[24] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[25] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[26] A HAIDER, M ARSALAN, C PARK et al. Exploring deep feature-blending capabilities to assist glaucoma screening. Applied Soft Computing, 133, 109918(2023).
[27] J CIVIT-MASOT. A study on the use of Edge TPUs for eye fundus image segmentation. Engineering Applications of Artificial Intelligence, 104, 104384(2021).
[28] HAIDERA, ARSALANM, HAIDERA, ARSALANM. Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images. Expert Systems With Applications, 207, 117968(2022).
[29] J D SUN, C YAO, J LIU et al. GNAS-U2Net: a new optic cup and optic disc segmentation architecture with genetic neural architecture search. IEEE Signal Processing Letters, 29, 697-701(2022).
Get Citation
Copy Citation Text
Yan YANG, Yadi CAO, Wenbo HUANG. Multi-scale semantic OD/OC segmentation method based on attention perception[J]. Optics and Precision Engineering, 2023, 31(21): 3203
Category:
Received: May. 22, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: YANG Yan (yanyang2016@hotmail.com)