Frontiers of Optoelectronics, Volume. 15, Issue 4, 12200(2022)

Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion

Boqing Zhang1, Nuo Chen1, Xinda Lu1, Yuntian Chen1,2, Xinliang Zhang1,2, and Jing Xu1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(31)

    [1] [1] Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)

    [2] [2] Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)

    [3] [3] Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)

    [4] [4] Suh, M.G., Yang, Q.F., Yang, K.Y., Yi, X., Vahala, K.J.: Microresonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)

    [5] [5] Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 42(21), 4442–4445 (2017)

    [6] [6] Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1(1), 10–14 (2014)

    [7] [7] Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)

    [8] [8] Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

    [9] [9] Suh, M.G., Vahala, K.J.: Soliton microcomb range measurement. Science 359(6378), 884–887 (2018)

    [10] [10] Wang, W., Wang, L., Zhang, W.: Advances in soliton microcomb generation. Adv. Photonics 2(3), 034001 (2020)

    [11] [11] Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)

    [12] [12] Bao, C., Xuan, Y., Leaird, D.E., Wabnitz, S., Qi, M., Weiner, A.M.: Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011 (2017)

    [13] [13] Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)

    [14] [14] Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50 (2019)

    [15] [15] Liao, M., Zhou, H., Geng, Y., Ling, Y., Wu, B., Qiu, K.: Enhanced single cavity soliton generation in Kerr microresonators via inverse-Kelly sideband. IEEE Photonics J. 9(3), 1–9 (2017)

    [16] [16] Xue, X., Zheng, Z., Zhou, B.: Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Res. 6(10), 948–953 (2018)

    [17] [17] Pan, J., Cheng, Z., Huang, T., Song, C., Shum, P.P., Brambilla, G.: Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators. J. Lightwave Technol. 37(21), 5531–5536 (2019)

    [18] [18] Perego, A.M., Turitsyn, S.K., Staliunas, K.: Gain through losses in nonlinear optics. Light Sci. Appl. 7(1), 43 (2018)

    [19] [19] Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A (Coll. Park) 103(1), 013522 (2021)

    [20] [20] Bessin, F., Perego, A.M., Staliunas, K., Turitsyn, S.K., Kudlinski, A., Conforti, M., Mussot, A.: Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10(1), 4489 (2019)

    [21] [21] Bechhoefer, J.: Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 79(10), 1053–1059 (2011)

    [22] [22] Lucarini, V., Peiponen, K., Saarinen, J.J., Vartiainen, E.M.: Kramers-Kronig relations in optical materials research. Springer, Berlin (2005)

    [23] [23] Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)

    [24] [24] Wang, Y., Leo, F., Fatome, J., Erkintalo, M., Murdoch, S.G., Coen, S.: Universal mechanism for the binding of temporal cavity solitons. Optica 4(8), 855–863 (2017)

    [25] [25] Tikan, A., Riemensberger, J., Komagata, K., Honl, S., Churaev, M., Skehan, C., Guo, H., Wang, R.N., Liu, J., Seidler, P., Kippenberg, T.J.: Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17(5), 604–610 (2021)

    [26] [26] Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys. Rev. Lett. 120(20), 203902 (2018)

    [27] [27] Wang, S., Wang, Q., Wang, W., Wang, X., Yu, M., Fang, Q., Cai, Y.: Pump condition dependent Kerr frequency comb generation in mid-infrared. Results Phys. 15, 102789 (2019)

    [28] [28] Carmon, T., Yang, L., Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12(20), 4742–4750 (2004)

    [29] [29] Jiang, X., Yang, L.: Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl. 9(1), 24 (2020)

    [30] [30] Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814 (2014)

    [31] [31] Chen, N., Zhang, B., Yang, H., Lu, X., He, S., Hu, Y., Chen, Y., Zhang, X., Xu, J.: Stability analysis of generalized Lugiato-Lefever equation with lumped filter for Kerr optical soliton generation in anomalous dispersion regime. In: Proceedings of Asian Communication and Photonics Conference (ACP 2021). Shanghai: IEEE, pp. T4A.187 (2022)

    Tools

    Get Citation

    Copy Citation Text

    Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu. Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Feb. 14, 2022

    Accepted: May. 15, 2022

    Published Online: Jan. 22, 2023

    The Author Email: Xu Jing (jing_xu@hust.edu.cn)

    DOI:10.1007/s12200-022-00047-y

    Topics