Optics and Precision Engineering, Volume. 32, Issue 13, 2103(2024)
Initial orbit determination in range search based on dynamic thresholds
[1] V BARANOVA, A SPIRIDONOV, S LIASHKEVICH et al. Video data processing system for ground-based space optical surveillance application, 19, 551-555(2023).
[2] D. GROSSE, F. BENNET, M. COPELAND et al. Upcoming satellite detection and tracking capabilities of the australian national university.
[3] A MOURSI. A survey of geosynchronous debris within OSTS at NRIAG-Egypt, 2022, 11.
[4] S AYDıN, M S ATAR, MALI ARABACI et al. Determination of space object size in leo using measurement of brightness, 7, 1-6(2023).
[5] [5] 雷祥旭, 桑吉章, 李振伟. 长春地基光电阵观测数据初步分析[J]. 测绘地理信息, 2019, 44(1): 41-44.LEIX X, SANGJ ZH, LIZH W. Preliminary analysis of observations obtained from ground-based electro-optical sensor array at Changchun[J]. Journal of Geomatics, 2019, 44(1): 41-44.(in Chinese)
[6] Z P LIANG, X DONG, M IBRAHIM et al. Tracking the space debris from the Changchun Observatory. Astrophysics and Space Science, 364, 201(2019).
[7] W B YANG, Z W LI, M LIU et al. Detection approach for GEO space objects with a wide-field optical telescope array. Optics Express, 31, 18717-18733(2023).
[8] J Y CHEN, J Z SANG, Z W LI et al. A case study on the effect of atmospheric density calibration on orbit predictions with sparse angular data. Remote Sensing, 15, 3128(2023).
[9] F K CHUN, R D TIPPETS, D M STRONG et al. A new global array of optical telescopes: the falcon telescope network. Publications of the Astronomical Society of the Pacific, 130(2018).
[10] B SHIN, E LEE, S Y PARK. Determination of geostationary orbits (GEO) satellite orbits using optical wide-field patrol network (OWL-net) data. Journal of Astronomy and Space Sciences, 36, 169-180(2019).
[11] H LUO, Y D MAO, Y YU et al. FocusGEO observations of space debris at Geosynchronous Earth Orbit. Advances in Space Research, 64, 465-474(2019).
[12] S HADJI HOSSEIN, M ACERNESE, T CARDONA et al. Sapienza Space debris Observatory Network (SSON): a high coverage infrastructure for space debris monitoring. Journal of Space Safety Engineering, 7, 30-37(2020).
[13] J ŠILHA, S KRAJČOVIČ, M ZIGO et al. Space debris observations with the Slovak AGO70 telescope: Astrometry and light curves. Advances in Space Research, 65, 2018-2035(2020).
[14] X Z GUO, P Q GAO, M SHEN et al. Introduction to APOSOS project: 15cm aperture electro-optical telescopes to track space objects. Advances in Space Research, 65, 1990-2002(2020).
[15] P R ESCOBAL. Methods of Orbit Determination(1965).
[16] [16] 陈龙, 刘承志, 李振伟, 等. LEO空间目标的非协同共视观测及初轨确定[J]. 光学学报, 2021, 41(19): 1912003. doi: 10.3788/aos202141.1912003CHENL, LIUCH ZH, LIZH W, et al. Non-cooperative common-view observation of LEO space objects and initial orbit determination[J]. Acta Optica Sinica, 2021, 41(19): 1912003.(in Chinese). doi: 10.3788/aos202141.1912003
[17] [17] 赵柯昕, 甘庆波, 刘静. 利用3次方位观测天基初轨确定新方法[J]. 天文学报, 2022, 63(5): 69-79.ZHAOK X, GANQ B, LIUJ. A new initial orbit determination method based on space-based three lines of sight[J]. Acta Astronomica Sinica, 2022, 63(5): 69-79.(in Chinese)
[18] [18] 汤靖师, 程昊文. 基于微分改正和圆轨道约束的广义Laplace方法初轨确定[J]. 中国科学(物理学、力学、天文学), 2022, 52(6): 117-129. doi: 10.1360/sspma-2021-0224TANGJ SH, CHENGH W. Initial orbit determination using the generalized Laplacian method with differential correction and circular-orbit constraint[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(6): 117-129.(in Chinese). doi: 10.1360/sspma-2021-0224
[19] [19] 雷祥旭, 夏胜夫, 杨洋, 等. LEO空间碎片甚短弧角度数据初轨确定方法对比[J]. 空间科学学报, 2022, 42(5): 984-990. doi: 10.11728/cjss2022.05.211026108LEIX X, XIAS F, YANGY, et al. Comparison of initial orbit determination methods with very-short-arc angle observations from LEO space debris[J]. Chinese Journal of Space Science, 2022, 42(5): 984-990.(in Chinese). doi: 10.11728/cjss2022.05.211026108
[20] [20] 崔文, 郭超, 陈建荣, 等. 基于光学数据的地球同步轨道目标定初轨方法[J]. 力学与实践, 2023, 45(4): 854-859.CUIW, GUOCH, CHENJ R, et al. Initial orbit determination method of geosynchronous target based on optical data[J]. Mechanics in Engineering, 2023, 45(4): 854-859.(in Chinese)
[21] Y YANG, Z LI, H CAI et al. Single-/multiple-revolution lambert's problem constraints for optical track-to-track association. Advances in the Astronautical Sciences AAS/AIAA Astrodynamics, 177(2021).
[22] [22] 章品, 桑吉章, 潘腾, 等. 应用距离搜索的低轨空间碎片初始轨道确定方法[J]. 航天器工程, 2017, 26(2): 22-28. doi: 10.3969/j.issn.1673-8748.2017.02.004ZHANGP, SANGJ ZH, PANT, et al. Initial orbit determination method based on range searching for LEO space debris[J]. Spacecraft Engineering, 2017, 26(2): 22-28.(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.02.004
Get Citation
Copy Citation Text
Xiangxu LEI, Zhendi LAO, Dongya WANG, Kunpeng WANG, Junyu CHEN, You ZHAO, Yaya LI. Initial orbit determination in range search based on dynamic thresholds[J]. Optics and Precision Engineering, 2024, 32(13): 2103
Category:
Received: Mar. 24, 2024
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: CHEN Junyu (jychen@kust.edu.cn)