Optics and Precision Engineering, Volume. 32, Issue 2, 184(2024)

Self-correction for resolver second harmonic angle measurement error

Yingguang WANG*, Jiyang ZHANG, Qiang ZHANG, Ming LU, and Limei TIAN
Author Affiliations
  • Beijing Institute of Control Engineering, Beijing100094, China
  • show less
    References(18)

    [1] [1] 张激扬, 周大宁, 高亚楠. 控制力矩陀螺框架控制方法及框架转速测量方法[J]. 空间控制技术与应用, 2008, 34(2): 23-28. doi: 10.3969/j.issn.1674-1579.2008.02.005ZHANGJ Y, ZHOUD N, GAOY N. Gimbal control technique and gimbal rate measurement method for the control moment gyro[J]. Aerospace Control and Application, 2008, 34(2): 23-28.(in Chinese). doi: 10.3969/j.issn.1674-1579.2008.02.005

    [2] [2] 李林, 袁利, 王立, 等. 从哈勃太空望远镜剖析微振动对高性能航天器指向测量与控制系统的影响[J]. 光学 精密工程, 2020, 28(11): 2478-2487. doi: 10.37188/OPE.20202811.2478LIL, YUANL, WANGL, et al. Influence of micro vibration on measurement and pointing control system of high-performance spacecraft from Hubble Space Telescope[J]. Opt. Precision Eng., 2020, 28(11): 2478-2487.(in Chinese). doi: 10.37188/OPE.20202811.2478

    [3] Y Y CUI, Y J YANG, L ZHAO et al. Composite control for gimbal systems with multiple disturbances: analysis, design, and experiment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53, 4789-4798(2023).

    [4] [4] 李海涛, 侯林, 韩邦成. 双框架磁悬浮控制力矩陀螺框架系统的扰动抑制[J]. 光学 精密工程, 2019, 27(4): 868-878. doi: 10.3788/ope.20192704.0868LIH T, HOUL, HANB C. Disturbance rejection for the DGMSCMG’s gimbal system[J]. Opt. Precision Eng., 2019, 27(4): 868-878.(in Chinese). doi: 10.3788/ope.20192704.0868

    [5] [5] 陈祥文, 李海涛. 带有谐波减速器的框架系统速度波动抑制[J]. 光学 精密工程, 2022, 30(20): 2457-2466. doi: 10.37188/ope.20223020.2457CHENX W, LIH T. Speed fluctuation suppression of the gimbal system with harmonic drive[J]. Opt. Precision Eng., 2022, 30(20): 2457-2466.(in Chinese). doi: 10.37188/ope.20223020.2457

    [6] [6] 鲁明, 李耀华, 张激扬, 等. 控制力矩陀螺框架伺服系统的超低速测速方法[J]. 中国惯性技术学报, 2012, 20(2): 234-238. doi: 10.3969/j.issn.1005-6734.2012.02.022LUM, LIY H, ZHANGJ Y, et al. Ultra-low speed detection method for CMG gimbal servo systems[J]. Journal of Chinese Inertial Technology, 2012, 20(2): 234-238.(in Chinese). doi: 10.3969/j.issn.1005-6734.2012.02.022

    [7] [7] 徐大林. 轴角-数字变换系统及智能型接口变换系统原理、设计与研制[D]. 南京: 东南大学, 2010.XUD L. The Principle, Design and Development of Sharft Angle to Digital and Intelligent Data Interface Conversion System[D]. Nanjing: Southeast University, 2010. (in Chinese)

    [8] [8] 许兴斗. 高频、高精度双通道旋转变压器的设计与信号处理[D]. 上海: 上海交通大学, 2008.XUX D. Design and Signal Disposal of the High Frequency and High Precision Two-Speed Resolver[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)

    [9] M ALEMI-ROSTAMI, R ALIPOUR-SARABI, G REZAZADEH et al. Design optimization of a double-stage resolver. IEEE Transactions on Vehicular Technology, 68, 5407-5415(2019).

    [10] [10] 肖跃华, 葛永强, 张渝怀. 双通道多极旋转变压器误差补偿[J]. 中国惯性技术学报, 2007, 15(5): 573-575. doi: 10.3969/j.issn.1005-6734.2007.05.015XIAOY H, GEY Q, ZHANGY H. Error compensation for twin-channel multipole resolvers[J]. Journal of Chinese Inertial Technology, 2007, 15(5): 573-575.(in Chinese). doi: 10.3969/j.issn.1005-6734.2007.05.015

    [11] [11] 孙伟, 高欣, 王真, 等. 应用于机器人关节的旋转变压器检测误差查表补偿[J]. 微特电机, 2014, 42(1): 66-68. doi: 10.3969/j.issn.1004-7018.2014.01.021SUNW, GAOX, WANGZ, et al. Resolver measurement error compensation using lookup table applied in a robot joint[J]. Small & Special Electrical Machines, 2014, 42(1): 66-68.(in Chinese). doi: 10.3969/j.issn.1004-7018.2014.01.021

    [12] [12] 李婧, 康建兵. 闭环轴角解算误差分析及精度补偿方法[J]. 航天返回与遥感, 2014, 35(1): 97-102. doi: 10.3969/j.issn.1009-8518.2014.01.013LIJ, KANGJ B. Analysis and compensation of position error based on loop tracking resolver-to-digital converter[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 97-102.(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.01.013

    [13] Z WU, Y L LI. High-accuracy automatic calibration of resolver signals via two-step gradient estimators. IEEE Sensors Journal, 18, 2883-2891(2018).

    [14] A BUNTE, S BEINEKE. High-performance speed measurement by suppression of systematic resolver and encoder errors. IEEE Transactions on Industrial Electronics, 51, 49-53(2004).

    [15] H Y QIN, Z WU. Angle tracking observer with improved accuracy for resolver-to-digital conversion. Symmetry, 11, 1347(2019).

    [16] M S GUO, Z WU, H Y QIN. Harmonics reduction for resolver-to-digital conversion via second-order generalized integrator with frequency-locked loop. IEEE Sensors Journal, 21, 8209-8217(2021).

    [17] R WANG, Z WU, Y L SHI. Suppressing harmonics in resolver signals via FLL-based complementary filters. IEEE Access, 9, 158402-158411(2021).

    [18] P JANG, T LEE, Y HWANG et al. Quadrature demodulation method for resolver signal processing under different sampling rate. IEEE Access, 10, 7016-7024(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yingguang WANG, Jiyang ZHANG, Qiang ZHANG, Ming LU, Limei TIAN. Self-correction for resolver second harmonic angle measurement error[J]. Optics and Precision Engineering, 2024, 32(2): 184

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 2, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: WANG Yingguang (wangyingguang_2005@126.com)

    DOI:10.37188/OPE.20243202.0184

    Topics