Electronics Optics & Control, Volume. 28, Issue 11, 69(2021)
Design of Reduced-Order Observers for Discrete-Time Markov Jump System
[1] [1] ZHANG J, ZHU F.On the observer matching condition and unknown input observer design based on the system left-invertibility concept[J].Transactions of the Institute of Measurement and Control, 2018, 40(9):2887-2900.
[2] [2] ZHANG J, CHADLI M, ZHU F.Finite-time observer design for singular systems subject to unknown inputs[J].IET Control Theory & Applications, 2019, 13(14):2289-2299.
[6] [6] ZHU F L, XU J, CHEN M Y.The combination of high-gain sliding mode observers used as receivers in secure communication[J].IEEE Transactions on Circuits and Systems I:Regular Papers, 2012, 59(11):2702-2712.
[7] [7] EDWARDS C, SPURGEON S K, PATTON R J.Sliding mode observers for fault detection and isolation[J].Automatica, 2000, 36(4):541-553.
[8] [8] BEI J, WU L, YANG J Z, et al.Safety analysis methods based on aircraft environment control system[J].Mechanical Engineering & Automation, 2015, 27(4):1214-1225.
[9] [9] SHIRBHATE I M, BARVE S S.Time-series energy prediction using hidden Markov model for smart solar system[C]//The 3rd International Conference on Communication and Electronics Systems(ICCES), 2018:1123-1127.
[10] [10] XIONG J, LAM J, GAO H, et al.On robust stabilization of Markovian jump systems with uncertain switching probabilities[J].Automatica, 2005, 41(5):897-903.
[11] [11] ZHANG L, BOUKAS E K.Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J].Automatica, 2009, 45(2):463-468.
[12] [12] HE S, LIU F.Adaptive observer-based fault estimation for stochastic Markovian jumping systems[J].Abstract & Applied Analysis, 2012:509-512.
[13] [13] WEISS L, INFANTE E F.Finite time stability under perturbing forces and on product spaces[J].IEEE Transactions on Automatic Control, 1967, 12(1):54-59.
[14] [14] LI X H, ZHANG W D.Integrated finite-time fault estimation and fault-tolerant control for Markovian jump systems with generally uncertain transition rates[J].Journal of Franklin Institute, 2020, 357(16):11298-11322.
[15] [15] LI S H, WANG Z, FEI S M.Finite-time control of a bioreactor system using terminal sliding mode[J].International Journal of Innovative Computing Information & Control, 2009, 5(10):3495-3504.
[16] [16] GAO X B, REN H R, DENG F Q, et al.Observer-based finite-time H∞ control for uncertain discrete-time nonhomogeneous Markov jump systems[J].Journal of the Franklin Institute, 2019, 356:1730-1749.
[17] [17] LI H Y, GAO H J, SHI P, et al.Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach[J].Automatica, 2014, 50(7):1825-1834.
[18] [18] LI M J, LI X H, LU D K.Finite-time observer-based control for Markovian jump systems with time-varying generally uncertain transition rates[J].Transactions of the Institute of Measurement and Control, 2021, 43(2):451-463.
Get Citation
Copy Citation Text
JING Miaomiao, LI Xiaohang. Design of Reduced-Order Observers for Discrete-Time Markov Jump System[J]. Electronics Optics & Control, 2021, 28(11): 69
Category:
Received: Nov. 6, 2020
Accepted: --
Published Online: Dec. 13, 2021
The Author Email: