Chinese Journal of Quantum Electronics, Volume. 40, Issue 5, 694(2023)
Research on relationship between locking parameters and stability of optical clocks
[1] Hong F L. Optical frequency standards for time and length applications[J]. Measurement Science and Technology, 28, 012002(2017).
[2] Riehle F, Gill P, Arias F et al. The CIPM list of recommended frequency standard values: Guidelines and procedures[J]. Metrologia, 55, 188-200(2018).
[3] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).
[4] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).
[5] Huang Y, Zhang H Q, Zhang B L et al. Geopotential measurement with a robust, transportable Ca+ optical clock[J]. Physical Review A, 102, 050802(2020).
[6] Sanner C, Huntemann N, Lange R et al. Optical clock comparison for Lorentz symmetry testing[J]. Nature, 567, 204-208(2019).
[7] Brewer S M, Chen J S, Hankin A M et al. 27Al+quantum-logic clock with a systematic uncertainty below 10-18[J]. Physical Review Letters, 123, 033201(2019).
[8] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8 × 10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).
[9] Peik E, Schneider T, Tamm C. Laser frequency stabilization to a single ion[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 39, 145-158(2006).
[10] Dubé P, Madej A A, Shiner A et al. 88Sr+ single-ion optical clock with a stability approaching the quantum projection noise limit[J]. Physical Review A, 92, 042119(2015).
[11] Zhang B L, Huang Y, Zhang H Q et al. Progress on the 40Ca+ ion optical clock[J]. Chinese Physics B, 29, 074209(2020).
[12] Barwood G P, Huang G, King S A et al. Frequency noise processes in a strontium ion optical clock[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 035401(2015).
[13] Song H F, Zeng M Y, Huang Y et al. Optimization of polarization matching in fiber coupling[J]. Chinese Journal of Quantum Electronics, 35, 374-378(2018).
[14] Shao H, Huang Y, Xie Y et al. Pulse sequence generation with high-performance for 40Ca+ optical frequency standard[J]. Chinese Journal of Quantum Electronics, 32, 668-672(2015).
[15] Zhang B L, Huang Y, Hao Y M et al. Improvement in the stability of a 40Ca+ ion optical clock using the Ramsey method[J]. Journal of Applied Physics, 128, 143105(2020).
[16] Dubé P, Madej A A, Zhou Z C et al. Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10–17 level[J]. Physical Review A, 87, 023806(2013).
[17] Dörscher S, Huntemann N, Schwarz R et al. Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock[J]. Metrologia, 58, 015005(2021).
Get Citation
Copy Citation Text
Baolin ZHANG, Zixiao MA, Yao HUANG, Hua GUAN, Kelin GAO. Research on relationship between locking parameters and stability of optical clocks[J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 694
Category:
Received: Oct. 13, 2021
Accepted: --
Published Online: Nov. 24, 2023
The Author Email: