Optics and Precision Engineering, Volume. 32, Issue 4, 565(2024)
Brain tumor image segmentation based on Semantic Flow Guided Sampling and Attention Mechanism
[1] M K BALWANT. A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions. IRBM, 43, 521-537(2022).
[2] D N LOUIS, A PERRY, P WESSELING et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncology, 23, 1231-1251(2021).
[3] Y M A MOHAMMED, SEL GAROUANI, I JELLOULI. A survey of methods for brain tumor segmentation-based MRI images. Journal of Computational Design and Engineering, 10, 266-293(2023).
[4] Y GU, J Q CHI, J Q LIU et al. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Computers in Biology and Medicine, 137, 104806(2021).
[5] Z H LIU, L TONG, L CHEN et al. Deep learning based brain tumor segmentation: a survey. Complex & Intelligent Systems, 9, 1001-1026(2023).
[6] [6] 谷宇. 基于深度卷积神经网络的CT影像肺结节检测技术研究[D]. 上海: 上海大学, 2019.GUY. Research on Lung Nodule Detection Based on Deep Convolutional Neural Network in Computed Tomography[D].Shanghai: Shanghai University, 2019. (in Chinese)
[7] [7] 徐胜军, 张若暄, 孟月波, 等. 融合分形几何特征Resnet遥感图像建筑物分割[J]. 光学 精密工程, 2022, 30(16): 2006-2020. doi: 10.37188/ope.20223016.2006XUS J, ZHANGR X, MENGY B, et al. Fusion of fractal geometric features Resnet remote sensing image building segmentation[J]. Opt. Precision Eng., 2022, 30(16): 2006-2020.(in Chinese). doi: 10.37188/ope.20223016.2006
[8] O RONNEBERGER, P FISCHER, T BROX.
[9] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation, 640-651(2017).
[10] Ö ÇIÇEK, A ABDULKADIR, S S LIENKAMP et al. 3
[11] N IBTEHAZ, M S RAHMAN. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74-87(2020).
[13] W WANG, C CHEN, M DING et al. Transbts: multimodal brain tumor segmentation using transformer, 109-119(2021).
[14] Y JIANG, Y ZHANG, X LIN et al. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sciences, 12, 797(2022).
[15] [15] 杨坚华, 张浩, 花海洋. 并行路径与强注意力机制遥感图像建筑物分割[J]. 光学 精密工程, 2023, 31(2): 234-245. doi: 10.37188/ope.20233102.0234YANGJ H, ZHANGH, HUAH Y. Parallel path and strong attention mechanism for building segmentation in remote sensing images[J]. Opt. Precision Eng., 2023, 31(2): 234-245.(in Chinese). doi: 10.37188/ope.20233102.0234
[16] [16] 梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 2022, 30(16): 2021-2038. doi: 10.37188/ope.20223016.2021LIANGL M, ZHOUL S, FENGJ, et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 2022, 30(16): 2021-2038.(in Chinese). doi: 10.37188/ope.20223016.2021
[17] Z HUANG, Y W ZHAO, Y H LIU et al. GCAUNet: a group cross-channel attention residual UNet for slice based brain tumor segmentation. Biomedical Signal Processing and Control, 70, 102958(2021).
[18] N M ABOELENEIN, S H PIAO, A KOUBAA et al. HTTU-net: hybrid two track U-net for automatic brain tumor segmentation. IEEE Access, 8, 101406-101415(2020).
[19] X Q LU, Y GU, L D YANG et al. Multi-level 3D densenets for false-positive reduction in lung nodule detection based on chest computed tomography. Current Medical Imaging, 16, 1004-1021(2020).
[20] C CHEN, X P LIU, M DING et al. 3
[21] Z R LUO, Z D JIA, Z M YUAN et al. HDC-net: hierarchical decoupled convolution network for brain tumor segmentation. IEEE Journal of Biomedical and Health Informatics, 25, 737-745(2021).
[22] X Y ZHOU, X Y LI, K HU et al. ERV-Net: an efficient 3D residual neural network for brain tumor segmentation. Expert Systems with Applications, 170, 114566(2021).
[23] X T LI, A S YOU, Z ZHU et al. Semantic Flow for Fast and Accurate Scene Parsing. Computer Vision – ECCV 2020, 775-793(2020).
[24] X LI, Z S ZHONG, J L WU et al. Expectation-maximization attention networks for semantic segmentation, 9166-9175(2019).
[25] N NUECHTERLEIN, S MEHTA. 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation, 245-253(2019).
[26] J X ZHANG, Z K JIANG, J DONG et al. Attention gate ResU-net for automatic MRI brain tumor segmentation. IEEE Access, 8, 58533-58545(2020).
[27] N SHENG, D W LIU, J X ZHANG et al. Second-order ResU-Net for automatic MRI brain tumor segmentation. Mathematical Biosciences and Engineering: MBE, 18, 4943-4960(2021).
[28] A S AKBAR, C FATICHAH, N SUCIATI. Single level UNet3D with multipath residual attention block for brain tumor segmentation. Journal of King Saud University-Computer and Information Sciences, 34, 3247-3258(2022).
[29] H X LIU, G Q HUO, Q LI et al. Multiscale lightweight 3D segmentation algorithm with attention mechanism: brain tumor image segmentation. Expert Systems with Applications, 214, 119166(2023).
[30] Y K CHANG, Z Z ZHENG, Y W SUN et al. DPAFNet: a residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation. Biomedical Signal Processing and Control, 79, 104037(2023).
Get Citation
Copy Citation Text
Jianli SONG, Xiaoqi LÜ, Yu GU. Brain tumor image segmentation based on Semantic Flow Guided Sampling and Attention Mechanism[J]. Optics and Precision Engineering, 2024, 32(4): 565
Category:
Received: Apr. 5, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: LÜ Xiaoqi (lxiaoqi@imut.edu.cn)