Optics and Precision Engineering, Volume. 32, Issue 4, 565(2024)

Brain tumor image segmentation based on Semantic Flow Guided Sampling and Attention Mechanism

Jianli SONG1... Xiaoqi LÜ1,2,* and Yu GU1 |Show fewer author(s)
Author Affiliations
  • 1School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou0400, China
  • 2School of Information Engineering, Inner Mongolia University of Technology, Hohhot010051, China
  • show less
    References(30)

    [1] M K BALWANT. A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions. IRBM, 43, 521-537(2022).

    [2] D N LOUIS, A PERRY, P WESSELING et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncology, 23, 1231-1251(2021).

    [3] Y M A MOHAMMED, SEL GAROUANI, I JELLOULI. A survey of methods for brain tumor segmentation-based MRI images. Journal of Computational Design and Engineering, 10, 266-293(2023).

    [4] Y GU, J Q CHI, J Q LIU et al. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Computers in Biology and Medicine, 137, 104806(2021).

    [5] Z H LIU, L TONG, L CHEN et al. Deep learning based brain tumor segmentation: a survey. Complex & Intelligent Systems, 9, 1001-1026(2023).

    [6] [6] 谷宇. 基于深度卷积神经网络的CT影像肺结节检测技术研究[D]. 上海: 上海大学, 2019.GUY. Research on Lung Nodule Detection Based on Deep Convolutional Neural Network in Computed Tomography[D].Shanghai: Shanghai University, 2019. (in Chinese)

    [7] [7] 徐胜军, 张若暄, 孟月波, 等. 融合分形几何特征Resnet遥感图像建筑物分割[J]. 光学 精密工程, 2022, 30(16): 2006-2020. doi: 10.37188/ope.20223016.2006XUS J, ZHANGR X, MENGY B, et al. Fusion of fractal geometric features Resnet remote sensing image building segmentation[J]. Opt. Precision Eng., 2022, 30(16): 2006-2020.(in Chinese). doi: 10.37188/ope.20223016.2006

    [8] O RONNEBERGER, P FISCHER, T BROX. U-Net Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [9] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation, 640-651(2017).

    [10] Ö ÇIÇEK, A ABDULKADIR, S S LIENKAMP et al. 3D U-Net Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, 424-432(2016).

    [11] N IBTEHAZ, M S RAHMAN. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74-87(2020).

    [13] W WANG, C CHEN, M DING et al. Transbts: multimodal brain tumor segmentation using transformer, 109-119(2021).

    [14] Y JIANG, Y ZHANG, X LIN et al. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sciences, 12, 797(2022).

    [15] [15] 杨坚华, 张浩, 花海洋. 并行路径与强注意力机制遥感图像建筑物分割[J]. 光学 精密工程, 2023, 31(2): 234-245. doi: 10.37188/ope.20233102.0234YANGJ H, ZHANGH, HUAH Y. Parallel path and strong attention mechanism for building segmentation in remote sensing images[J]. Opt. Precision Eng., 2023, 31(2): 234-245.(in Chinese). doi: 10.37188/ope.20233102.0234

    [16] [16] 梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 2022, 30(16): 2021-2038. doi: 10.37188/ope.20223016.2021LIANGL M, ZHOUL S, FENGJ, et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 2022, 30(16): 2021-2038.(in Chinese). doi: 10.37188/ope.20223016.2021

    [17] Z HUANG, Y W ZHAO, Y H LIU et al. GCAUNet: a group cross-channel attention residual UNet for slice based brain tumor segmentation. Biomedical Signal Processing and Control, 70, 102958(2021).

    [18] N M ABOELENEIN, S H PIAO, A KOUBAA et al. HTTU-net: hybrid two track U-net for automatic brain tumor segmentation. IEEE Access, 8, 101406-101415(2020).

    [19] X Q LU, Y GU, L D YANG et al. Multi-level 3D densenets for false-positive reduction in lung nodule detection based on chest computed tomography. Current Medical Imaging, 16, 1004-1021(2020).

    [20] C CHEN, X P LIU, M DING et al. 3D Dilated Multi-Fiber Network for Real-Time Brain Tumor Segmentation in MRI. Lecture Notes in Computer Science, 184-192(2019).

    [21] Z R LUO, Z D JIA, Z M YUAN et al. HDC-net: hierarchical decoupled convolution network for brain tumor segmentation. IEEE Journal of Biomedical and Health Informatics, 25, 737-745(2021).

    [22] X Y ZHOU, X Y LI, K HU et al. ERV-Net: an efficient 3D residual neural network for brain tumor segmentation. Expert Systems with Applications, 170, 114566(2021).

    [23] X T LI, A S YOU, Z ZHU et al. Semantic Flow for Fast and Accurate Scene Parsing. Computer Vision – ECCV 2020, 775-793(2020).

    [24] X LI, Z S ZHONG, J L WU et al. Expectation-maximization attention networks for semantic segmentation, 9166-9175(2019).

    [25] N NUECHTERLEIN, S MEHTA. 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation, 245-253(2019).

    [26] J X ZHANG, Z K JIANG, J DONG et al. Attention gate ResU-net for automatic MRI brain tumor segmentation. IEEE Access, 8, 58533-58545(2020).

    [27] N SHENG, D W LIU, J X ZHANG et al. Second-order ResU-Net for automatic MRI brain tumor segmentation. Mathematical Biosciences and Engineering: MBE, 18, 4943-4960(2021).

    [28] A S AKBAR, C FATICHAH, N SUCIATI. Single level UNet3D with multipath residual attention block for brain tumor segmentation. Journal of King Saud University-Computer and Information Sciences, 34, 3247-3258(2022).

    [29] H X LIU, G Q HUO, Q LI et al. Multiscale lightweight 3D segmentation algorithm with attention mechanism: brain tumor image segmentation. Expert Systems with Applications, 214, 119166(2023).

    [30] Y K CHANG, Z Z ZHENG, Y W SUN et al. DPAFNet: a residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation. Biomedical Signal Processing and Control, 79, 104037(2023).

    CLP Journals

    [1] Di WANG, Xiaoqi LÜ, Jing LI. Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization[J]. Optics and Precision Engineering, 2024, 32(24): 3644

    [2] Di WANG, Xiaoqi LÜ, Jing LI. Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization[J]. Optics and Precision Engineering, 2024, 32(24): 3644

    Tools

    Get Citation

    Copy Citation Text

    Jianli SONG, Xiaoqi LÜ, Yu GU. Brain tumor image segmentation based on Semantic Flow Guided Sampling and Attention Mechanism[J]. Optics and Precision Engineering, 2024, 32(4): 565

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: LÜ Xiaoqi (lxiaoqi@imut.edu.cn)

    DOI:10.37188/OPE.20243204.0565

    Topics