Journal of Inorganic Materials, Volume. 36, Issue 4, 425(2021)
[1] YEH J W, CHEN S K, LIN S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).
[2] TSAI K Y, TSAI M H, YEH J W et al. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 61, 4887-4897(2013).
[3] YEH J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 31, 633-648(2006).
[4] KIM K B, WARREN P J, CANTOR B et al. Devitrification of nano-scale icosahedral phase in multicomponent alloys[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 449, 983-986(2007).
[5] CHEN C, ZHANG H, FAN Y Z et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification[J]. Intermetallics, 122, 106778(2020).
[6] EDALATI P, FLORIANO R, TANG Y P et al. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion[J]. Materials Science and Engineering C, 112, 110908(2020).
[8] ROST C M, SACHET E, BORMAN T et al. Entropy-stabilized oxides[J]. Nature Communications, 6, 8485(2015).
[9] JIN T, SANG X H, UNOCIC R R et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 30, 1707512(2018).
[10] HARRINGTON T J, GILD J, SARKER P et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Materialia, 166, 271-280(2019).
[12] DEMIRSKYI D, BORODIANSKA H, SUZUKI T S et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC[J]. Scripta Materialia, 164, 12-16(2019).
[13] ZHANG Y, SUN S K, ZHANG W et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process[J]. Ceramics International, 46, 14299-14303(2020).
[17] BERARDAN D, MEENA A K, FRANGER S et al. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides[J]. Journal of Alloys and Compounds, 704, 693-700(2017).
[19] DĄBROWA J, STYGAR M, MIKUŁA A et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure[J]. Materials Letters, 216, 32-36(2018).
[20] MAO A Q, QUAN F, XIANG H Z et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder[J]. Journal of Molecular Structure, 1194, 11-18(2019).
[21] MAO A Q, XIANG H Z, ZHANG Z G et al. A new class of spinel high-entropy oxides with controllable magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 497, 165884(2020).
[22] STYGAR M, DĄBROWA J, MOŹDZIERZ M et al. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels[J]. Journal of The European Ceramic Society, 40, 1644-1650(2020).
[23] CHEN K P, PEI X T, TANG L et al. A five-component entropy-stabilized fluorite oxide[J]. Journal of the European Ceramic Society, 38, 4161-4164(2018).
[24] GILD J, SAMIEE M, BRAUN J L et al. High-entropy fluorite oxides[J]. Journal of the European Ceramic Society, 38, 3578-3584(2018).
[25] SARKAR A, DJENADIC R, WANG D et al. Rare earth and transition metal based entropy stabilised perovskite type oxides[J]. Journal of the European Ceramic Society, 38, 2318-2327(2018).
[26] WITTE R, SARKAR A, KRUK R et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites[J]. Physical Review Materials, 3, 34406(2019).
[27] JIANG S C, HU T, GILD J et al. A new class of high-entropy perovskite oxides[J]. Scripta Materialia, 142, 116-120(2018).
[28] QIU N, CHEN H, YANG Z M et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance[J]. Journal of Alloys and Compounds, 777, 767-774(2019).
[29] BERARDAN D, FRANGER S, DRAGOE D et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).
[30] MAO A Q, XIANG H Z, ZHANG Z G et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J]. Journal of Magnetism and Magnetic Materials, 484, 245-252(2019).
[31] BÉRARDAN D, FRANGER S, MEENA A K et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 4, 9536-9541(2016).
[33] WEI W F, CUI X W, CHEN W X et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors[J]. Journal of Power Sources, 186, 543-550(2009).
[34] SUBRAMANIAN V, ZHU H W, VAJTAI R et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. Journal of Physical Chemistry B, 109, 20207-20214(2005).
[35] PATIL U M, NAM M S, SOHN J S et al. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors[J]. Journal of Materials Chemistry, 2, 19075-19083(2014).
Get Citation
Copy Citation Text
Yiliang WANG, Yunlong AI, Shuwei YANG, Bingliang LIANG, Zhenhuan ZHENG, Sheng OUYANG, Wen HE, Weihua CHEN, Changhong LIU, Jianjun ZHANG, Zhiyong LIU.
Category: RESEARCH PAPER
Received: Jul. 10, 2020
Accepted: --
Published Online: Nov. 24, 2021
The Author Email: Bingliang LIANG (lbl@nchu.edu.cn)