Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2308(2024)

Construction and Photoelectrochemical Performance of Zinc Oxide/Zinc Stannate/Tin Dioxide Double Heterojunction Nanoarray

ZHOU Longjie1... WANG Hang1, LIU Shuo1, LI Lihua1,2, and HUANG Jinliang12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(36)

    [1] [1] HAO M M, BAI Y, ZEISKE S, et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation[J]. Nat Energy, 2020, 5(1): 79-88.

    [2] [2] SI H N, LIAO Q L, KANG Z, et al. Photovoltaics: Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite[J]. Adv Funct Mater, 2017, 27(30): 1701804.

    [3] [3] WU H L, SI H N, ZHANG Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der waals heterostructure for ultrasensitive photodetector[J]. Adv Sci, 2018, 5(12): 1801219.

    [4] [4] ZHANG P, WU J, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials[J]. Adv Mater, 2018, 30(3): 1703737.

    [5] [5] PAN H, ZHAO X J, GONG X, et al. Advances in design engineering and merits of electron transporting layers in perovskite solar cells[J]. Mater Horiz, 2020, 7(9): 2276-2291.

    [6] [6] SOLANKI A, YADAV P, TURREN-CRUZ S H, et al. Cation influence on carrier dynamics in perovskite solar cells[J]. Nano Energy, 2019, 58: 604-611.

    [7] [7] WANG M, DUAN J L, DU J, et al. High-efficiency all-inorganic perovskite solar cells tailored by scalable rutile TiO2 nanorod arrays with excellent stability[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12091-12098.

    [8] [8] SI Haonan, ZHANG Zheng, LIAO Qingliang, et al. Chin Sci Bull, 2020, 65(25): 2721-2739.

    [9] [9] WANG H, YUAN J F, XI J H, et al. Multiple-function surface engineering of SnO2 nanoparticles to achieve efficient perovskite solar cells[J]. J Phys Chem Lett, 2021, 12(37): 9142-9148.

    [10] [10] LIU H F, HUANG Z R, WEI S Y, et al. Nano-structured electron transporting materials for perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6209-6221.

    [11] [11] ZHANG Zheng, ZHUOKANG, LIAO Qingliang, et al. Chin Phys B, 2017, 26(11): 19-29.

    [12] [12] MANSPEAKER C, SCRUGGS P, PREISS J, et al. Reliable annealing of CH3NH3PbI3 films deposited on ZnO[J]. J Phys Chem C, 2016, 120: 6377-6382.

    [13] [13] DKHISSI Y, MEYER S, CHEN D H, et al. Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates[J]. ChemSusChem, 2016, 9(7): 687-695.

    [14] [14] QI Gaocan. Controllable preparation and properties of function- oriented ZnO nanostructures[D]. Tianjin: Tianjin University, 2014.

    [15] [15] SALEEM M, ALGAHTANI A, REHMAN S U, et al. Solution processed Zn1-x-ySmxCuyO nanorod arrays for dye sensitized solar cells[J]. Nanomaterials, 2021, 11(7): 1710.

    [16] [16] LI Z X, WANG R, XUE J J, et al. Core-shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells[J]. J Am Chem Soc, 2019, 141(44): 17610-17616.

    [17] [17] WANG He, WANG Hang, LI Lihua, et al. Semicond Optoelectron, 2023, 44(2): 245-250.

    [18] [18] NAVIDPOUR A H, FAKHRZAD M. Photocatalytic activity of Zn2SnO4 coating deposited by air plasma spraying[J]. Appl Surface Sci Adv, 2021, 6: 100153.

    [19] [19] PALAI A, PANDA N R, SAHOO M R, et al. Study on the electronic band structure of ZnO-SnO2 heterostructured nanocomposites with mechanistic investigation on the enhanced photoluminescence and photocatalytic properties[J]. J Mater Sci Mater Electron, 2022, 33(12): 9599-9615.

    [20] [20] WANG H, WANG H, LI L H, et al. Self-powered broadband photodetectors material based on Co3O4-ZnO heterojunction with bottlebrush nanostructure[J]. ACS Appl Electron Mater, 2023, 5(6): 3224-3231.

    [21] [21] LI Yongkuan. Sol-gel preparation and opto-electrical characterization of Zn-Sn oxide thin films[D]. Shenyang: Northeastern University, 2013.

    [22] [22] TAO Lingling. Zinc stannate nanocrystals for high efficiency dye sensitized solar cells based on cobalt complex mediators: Preparation and characterizations[D]. Tianjin: Tianjin University of Technology, 2020.

    [23] [23] TAI M Q, ZHAO X Y, SHEN H P, et al. Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells[J]. Chem Eng J, 2019, 361: 60-66.

    [24] [24] MOHAPATRA L, NAGARAJU M, SUMAN S, et al. Enhancement in photocurrent conversion efficiency via recrystallization of zinc tin hydroxide nanostructures[J]. J Alloys Compd, 2022, 928.

    [25] [25] TAO L L, SUN Z, CHEN L, et al. High performance zinc stannate photoanodes in dye sensitized solar cells with cobalt complex mediators[J]. Chem Commun, 2020, 56(37): 5042-5045.

    [26] [26] JAMES E M, BENNETT M T, BANGLE R E, et al. Electron localization and transport in SnO2/TiO2 mesoporous thin films: Evidence for a SnO2/SnxTi1-xO2/TiO2 structure[J]. Langmuir, 2019, 35(39): 12694-12703.

    [27] [27] QUINTANA A, GóMEZ A, BARó M D, et al. Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse[J]. Mater Des, 2017, 133: 54-61.

    [28] [28] XIONG Tinghui, CAI Wenhan, MIAO Yu, et al. Chin J Mater Res, 2022, 36(7): 481-488.

    [29] [29] HANAI M, HOSOMI S, KOJIMA H, et al. Dependence of TiO2 and ZnO nanoparticle concentration on electrical insulation characteristics of insulating oil[C]//2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Chenzhen, China. IEEE, 2014: 780-783.

    [30] [30] HAN G, KANG M, JEONG Y, et al. Thermal evaporation synthesis of vertically aligned Zn2SnO4/ZnO radial heterostructured nanowires array[J]. Nanomaterials, 2021, 11(6): 1500.

    [31] [31] SUN J L, LI N X, DONG L, et al. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells[J]. Nanotechnology, 2021, 32(47): 475204.

    [32] [32] SUN Y M, SEO J H, TAKACS C J, et al. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer[J]. Adv Mater, 2011, 23(14): 1679-1683.

    [33] [33] CAO S L, WANG H X, LI H Y, et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells[J]. Chem Eng J, 2020, 394: 124903.

    [34] [34] ZHANG R, MA S Y, ZHANG J L, et al. Enhanced formaldehyde gas sensing performance based on Bi doped Zn2SnO4/SnO2 porous nanospheres[J]. J Alloys Compd, 2020, 828: 154408.

    [35] [35] FAN Mengmeng, WEN Xiaojiang, TAO Ziyang, et al. Chin J Inorg Chem, 2023, 39(1): 23-31.

    [36] [36] DAS A, PATRA M, KUMAR P M, et al. Role of type II heterojunction in ZnO-In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport[J]. Mater Chem Phys, 2021, 263: 124431.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Longjie, WANG Hang, LIU Shuo, LI Lihua, HUANG Jinliang. Construction and Photoelectrochemical Performance of Zinc Oxide/Zinc Stannate/Tin Dioxide Double Heterojunction Nanoarray[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2308

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 11, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Jinliang HUANG (huangjl@haust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230487

    Topics