Journal of Synthetic Crystals, Volume. 53, Issue 10, 1809(2024)

Preparation and Characterization of UiO-66-NH2 Composite Sulfonated Polyphosphazene Proton Exchange Membranes

FU Fengyan... GAO Zhihua, WANG Yan, WANG Xiaohong, ZHANG Li, WANG Pei and LIU Yanbin |Show fewer author(s)
Author Affiliations
  • Department of Chemistry, Hengshui University, Hengshui 053000, China
  • show less
    References(22)

    [1] [1] HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4612.

    [2] [2] WANG Y, RUIZ DIAZ D F, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells—a review[J]. Materials Today, 2020, 32: 178-203.

    [3] [3] WANG J T, ZHANG Z Z, YUE X J, et al. Independent control of water retention and acid-base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity[J]. Journal of Materials Chemistry A, 2013, 1(6): 2267-2277.

    [5] [5] LABERTY-ROBERT C, VALL K, PEREIRA F, et al. Design and properties of functional hybrid organic-inorganic membranes for fuel cells[J]. Chemical Society Reviews, 2011, 40(2): 961-1005.

    [6] [6] ZHANG H Q, HE Y K, ZHANG J K, et al. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer[J]. Journal of Membrane Science, 2016, 505: 108-118.

    [7] [7] YANG D, GATES B C. Catalysis by metal organic frameworks: perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798.

    [8] [8] WANG L, ZHENG M, XIE Z G. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise[J]. Journal of Materials Chemistry B, 2018, 6(5): 707-717.

    [9] [9] YOSHIDA Y, KITAGAWA H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 70-81.

    [10] [10] SADAKIYO M, YAMADA T, KITAGAWA H. Hydrated proton-conductive metal-organic frameworks[J]. ChemPlusChem, 2016, 81(8): 691-701.

    [12] [12] LIANG X Q, ZHANG F, FENG W, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3): 983-992.

    [13] [13] BAO Y L, ZHENG J Y, ZHENG H P, et al. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials[J]. Journal of Solid State Chemistry, 2022, 310: 123070.

    [14] [14] WU B, LIN X C, GE L, et al. A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks[J]. Chemical Communications, 2013, 49(2): 143-145.

    [15] [15] WANG L Y, DENG N P, WANG G, et al. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39979-39990.

    [16] [16] YIN C S, HE C Q, LIU Q C, et al. Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes[J]. Physical Chemistry Chemical Physic, 2019, 21(47): 25982-25992.

    [17] [17] WANG J T, BAI H J, ZHANG H Q, et al. Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles[J]. Electrochimica Acta, 2015, 152: 443-455.

    [18] [18] RAO Z, FENG K, TANG B B, et al. Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane[J]. Journal of Membrane Science, 2017, 533: 160-170.

    [19] [19] RAO Z, TANG B B, WU P Y. Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22597-22603.

    [20] [20] FU F Y, XU H L, DONG Y, et al. Design of polyphosphazene-based graft copolystyrenes with alkylsulfonate branch chains for proton exchange membranes[J]. Journal of Membrane Science, 2015, 489: 119-128.

    [21] [21] LUO T W, ZHANG Y X, XU H L, et al. Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes[J]. Journal of Membrane Science, 2016, 514: 527-536.

    [22] [22] LI X H, YU Y F, MENG Y Z. Novel quaternized poly(arylene ether sulfone)/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1414-1422.

    [23] [23] FU F Y, XU H L, HE M L, et al. Composite polyphosphazene membranes doped with phosphotungstic acid and silica[J]. Chinese Journal of Polymer Science, 2014, 32(8): 996-1002.

    [24] [24] YANG F, HUANG H L, WANG X Y, et al. Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses[J]. Crystal Growth & Design, 2015, 15(12): 5827-5833.

    Tools

    Get Citation

    Copy Citation Text

    FU Fengyan, GAO Zhihua, WANG Yan, WANG Xiaohong, ZHANG Li, WANG Pei, LIU Yanbin. Preparation and Characterization of UiO-66-NH2 Composite Sulfonated Polyphosphazene Proton Exchange Membranes[J]. Journal of Synthetic Crystals, 2024, 53(10): 1809

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 7, 2024

    Accepted: Jan. 17, 2025

    Published Online: Jan. 17, 2025

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics