Laser Journal, Volume. 45, Issue 12, 49(2024)

Improved YOLOv5s Algorithm for rotation object detection in remote sensing images

LIU Bingbing1, HU Yaoguo1, YAN Peng2, and ZHANG Qinlin1、*
Author Affiliations
  • 1College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
  • 2Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710068, China
  • show less
    References(25)

    [1] [1] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28: 2176-2184.

    [2] [2] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6154-6162.

    [3] [3] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37.

    [4] [4] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

    [5] [5] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.

    [6] [6] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.

    [7] [7] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [8] [8] Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.

    [9] [9] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.

    [10] [10] Ma J, Shao W, Ye H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111-3122.

    [11] [11] Jiang Y, Zhu X, Wang X, et al. R2CNN: Rotational region CNN for orientation robust scene text detection[J]. arXiv preprint arXiv: 1706.09579, 2017.

    [12] [12] Ding J, Xue N, Long Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2849-2858.

    [14] [14] Yang X, Yang X, Yang J, et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[J]. Advances in Neural Information Processing Systems, 2021, 34: 18381-18394.

    [15] [15] Li W, Chen Y, Hu K, et al. Oriented reppoints for aerial object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 1829-1838.

    [18] [18] Yang X, Yan J. Arbitrary-oriented object detection with circular smooth label[C]//Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,2020, Proceedings, Part VIII 16. Springer International Publishing, 2020: 677-694.

    [19] [19] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, June 18-22,2018: 7132-7141.

    [20] [20] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV), Munich, Germany, Sep 8-14,2018: 3-19.

    [21] [21] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13713-13722.

    [22] [22] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.

    [23] [23] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.

    [24] [24] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8759-8768.

    [25] [25] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.

    [26] [26] Liu S, Huang D, Wang Y. Learning spatial fusion for single-shot object detection[J]. arXiv preprint arXiv: 1911.09516, 2019.

    [27] [27] Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3974-3983.

    [28] [28] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 1745-1750.

    Tools

    Get Citation

    Copy Citation Text

    LIU Bingbing, HU Yaoguo, YAN Peng, ZHANG Qinlin. Improved YOLOv5s Algorithm for rotation object detection in remote sensing images[J]. Laser Journal, 2024, 45(12): 49

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 29, 2024

    Accepted: Mar. 10, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Qinlin ZHANG (zhangqinglin@mail.ccnu.edu.cn)

    DOI:10.14016/j.cnki.jgzz.2024.12.049

    Topics