Journal of the Chinese Ceramic Society, Volume. 51, Issue 8, 2027(2023)

Preparation and Electrochemical Properties of 1D/2D MnS/Ni3S2 Heterostructures

ZHENG Jiahong*... BAI Xin and SHEN Jiajun |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(36)

    [1] [1] WU S R, LIU J B, WANG H, et al. A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors[J]. Int J Energy Res, 2019, 43(2): 697-716.

    [2] [2] SEPHRA P J, BARANEEDHARAN P, SIVAKUMAR M, et al. Size controlled synthesis of SnO2 and its electrostatic self- assembly over reduced graphene oxide for photocatalyst and supercapacitor application[J]. Mater Res Bull, 2018, 106: 103-112.

    [3] [3] LIANG R B, DU Y Q, XIAO P, et al. Transition metal oxide electrode materials for supercapacitors: a review of recent developments[J]. Nanomaterials (Basel), 2021, 11(5): 1248.

    [4] [4] AZADMANJIRI J, SRIVASTAVA V K, KUMAR P, et al. Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices[J]. J Mater Chem A, 2018, 6(3): 702-734.

    [5] [5] WANG Y, ZHANG X F, LI X, et al. Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance[J]. J Colloid Interface Sci, 2017, 490: 252-258.

    [6] [6] MENG Q F, CAI K F, CHEN Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.

    [7] [7] YU X Y, YU L, WU H B, et al. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties[J]. Angew Chem Int Ed, 2015, 54(18): 5331-5335.

    [8] [8] MA X Q, CHEN J, YUAN B F, et al. Three-dimensional hollow nickel phosphate microspheres with controllable hoya-like structure for high-performance enzymeless glucose detection and supercapacitor[J]. Appl Surf Sci, 2022, 588: 152928.

    [9] [9] ZHU T, WU H B, WANG Y B, et al. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production[J]. Adv Energy Mater, 2012, 2(12): 1497-1502.

    [10] [10] LIN H L, LIU F, WANG X J, et al. Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity[J]. Electrochim Acta, 2016, 191: 705-715.

    [11] [11] HOU L R, SHI Y Y, ZHU S Q, et al. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors[J]. J Mater Chem A, 2017, 5(1): 133-144.

    [13] [13] WEI X J, LI Y H, PENG H R, et al. Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage[J]. Chem Eng J, 2018, 341: 618-627.

    [14] [14] WANG J, CHAO D L, LIU J L, et al. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage[J]. Nano Energy, 2014, 7: 151-160.

    [15] [15] RUI X H, TAN H T, YAN Q Y. Nanostructured metal sulfides for energy storage[J]. Nanoscale, 2014, 6(17): 9889-9924.

    [16] [16] YANG J, YU C, FAN X M, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy Environ Sci, 2016, 9(4): 1299-1307.

    [17] [17] GONALVES J M, DA SILVA M I, HASHEMINEJAD M, et al. Recent progress in Core@Shell sulfide electrode materials for advanced supercapacitor devices[J]. Batter Supercaps, 2021, 4(9): 1397-1427.

    [18] [18] CHEN J S, GUAN C, GUI Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Appl Mater Interfaces, 2017, 9(1): 496-504.

    [19] [19] WANG Q S, ZHANG Y F, JIANG H M, et al. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor[J]. Chem Eng J, 2019, 362: 818-829.

    [20] [20] ZHU D, YAN M L, CHEN R R, et al. 3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability[J]. Chem Eng J, 2019, 371: 348-355.

    [21] [21] HUANG X, ZHANG Z G, LI H, et al. Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode[J]. J Alloys Compd, 2017, 722: 662-668.

    [22] [22] ZHANG G H, XUAN H C, WANG R, et al. Enhanced supercapacitive performance in Ni3S2/MnS composites via an ion-exchange process for supercapacitor applications[J]. Electrochim Acta, 2020, 353: 136517.

    [23] [23] NING J Y, ZHANG D, SONG H H, et al. Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage[J]. J Mater Chem A, 2016, 4(31): 12098-12105.

    [24] [24] BIESINGER M C, PAYNE B P, LAU L W M, et al. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems[J]. Surf Interface Anal, 2009, 41(4): 324-332.

    [25] [25] CHEN L L, DENG H M, TAO J H, et al. Strategic improvement of Cu2MnSnS4 films by two distinct post-annealing processes for constructing thin film solar cells[J]. Acta Mater, 2016, 109: 1-7.

    [26] [26] ABUELFTOOH A M, TANTAWY N S, MAHMOUAD S S, et al. High specific energy supercapacitor electrode prepared from MnS/Ni3S2 composite grown on nickel foam[J]. New J Chem, 2021, 45(39): 18641-18650.

    [27] [27] ZHANG Z M, WANG Q, ZHAO C J, et al. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4861-4868.

    [28] [28] LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nat Commun, 2013, 4: 1894.

    [29] [29] XIONG X B, CHEN J, ZHANG D, et al. Hetero-structured nanocomposites of Ni/Co/O/S for high-performance pseudo- supercapacitors[J]. Electrochim Acta, 2019, 299: 298-311.

    [30] [30] BREDAR A, CHOWN A, BURTON A, et al. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl Energy Mater, 2020, 3(1): 66-98.

    [31] [31] SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chem Rev, 2018, 118(18): 9233-9280.

    [32] [32] JIN J L, GENG X S, CHEN Q, et al. A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors[J]. Nanomicro Lett, 2022, 14(1): 64.

    [33] [33] PEI Y Y, LIU C F, HAN Z X, et al. Revealing the impacts of metastable structure on the electrochemical properties: The case of MnS[J]. J Power Sources, 2019, 431: 75-83.

    [34] [34] DAI C S, CHIEN P Y, LIN J Y, et al. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5(22): 12168-12174.

    [35] [35] CHEN S, CHEN H C, LI C, et al. Tuning the electrochemical behavior of CoxMn3-x sulfides by varying different Co/Mn ratios in supercapacitor[J]. J Mater Sci, 2017, 52(11): 6687-6696.

    [36] [36] ZHAO Y Y, GUO J, LIU A M, et al. 2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor[J]. J Alloys Compd, 2020, 814: 152271.

    [37] [37] HUANG L, HOU H J, LIU B C, et al. Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment[J]. Appl Surf Sci, 2017, 425: 879-888.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Jiahong, BAI Xin, SHEN Jiajun. Preparation and Electrochemical Properties of 1D/2D MnS/Ni3S2 Heterostructures[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2027

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2022

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Jiahong ZHENG (jhzheng@chd.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics