Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1074(2022)
Recent Development on Borosilicate Bioactive Glass
[1] [1] PECK M D. Epidemiology of burns throughout the World. Part II:intentional burns in adults[J]. Burns, 2012, 38(5): 630-637.
[2] [2] PROKSCH E, BRANDNER J M, JENSEN J M. The skin: An indispensable barrier[J]. Exp Dermatol, 2008, 17(12): 1063-1072.
[3] [3] WANG J, LIU C. Materiobiology-opportunities and challenges for bone regenerative biomaterials[J]. Mater Chin, 2019, 38: 5.
[4] [4] MEHRABI T, MESGAR A S, MOHAMMADI Z. Bioactive glasses: A promising therapeutic ion release strategy for enhancing wound healing[J]. ACS Biomater Sci Eng, 2020, 6(10): 5399-5430.
[5] [5] HENCH L L, POLAK J M. Third-generation biomedical materials[J].Science, 2002(295): 1014-1017.
[6] [6] HENCH L L. The story of bioglass[J]. J Mater Sci Mater Med, 2006,17(11): 967-978.
[7] [7] HENCH L L, SPLINTER R J, ALLEN W C. Bonding mechanisms at the interface of ceramic prosthetic materials[J]. J Biomed Mater Res Symposium, 1971(2): 117-141.
[8] [8] STONE-WEISS N, BRADTMüLLER H, FORTINO M, et al.Combined experimental and computational approach toward the structural design of borosilicate-based bioactive glasses[J]. J Phys Chem C, 2020, 124(32): 17655-17674.
[9] [9] STONE-WEISS N, BRADTMULLER H, ECKERT H, et al. Composition-structure-solubility relationships in borosilicate glasses: toward a rational design of bioactive glasses with controlled dissolution behavior[J]. ACS Appl Mater Interfaces, 2021, 13(27): 31495-31513.
[10] [10] BAKER S J, TOMSHO J W, BENKOVIC S J. Boron-containing inhibitors of synthetases[J]. Chem Soc Rev, 2011, 40(8): 4279-4285.
[11] [11] ULUISIK I, KARAKAYA H C, KOC A. The importance of boron in biological systems[J]. J Trace Elem Med Biol, 2018, 45: 156-162.
[12] [12] GOLDBACH H E, WIMMER M A. Boron in plants and animals: Is there a role beyond cell-wall structure?[J]. J Plant Nutr Soil Sci, 2007,170(1): 39-48.
[13] [13] MIWA K, TAKANO J, OMORI H, et al. Plants tolerant of high boron levels[J]. Science, 2007, 318(5855): 1417-1417.
[14] [14] CLARKE W B, WEBBER C E, KOEKEBAKKER M, et al. Lithium and boron in human blood[J]. J Labor Clin Med, 1987, 109(2):155-158.
[15] [15] KU W W, CHAPIN R E, MOSEMAN R F, et al. Tissue disposition of boron in male Fischer rats[J]. Toxicol Appl Pharm, 1991, 111(1):145-151.
[16] [16] DZONDO-GADET M, MAYAP-NZIETCHUENG R, HESS K, et al.Action of boron at the molecular level[J]. Biolog Trace Element Res,2002, 85(1): 23-33.
[17] [17] HUANG W, DAY D E, KITTIRATANAPIBOON K, et al. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions[J]. J Mater Sci Mater Med, 2006, 17(7): 583-596.
[18] [18] COLE K A, FUNK G A, RAHAMAN M N, et al. Mechanical and degradation properties of poly(methyl methacrylate) cement/borate bioactive glass composites[J]. J Biomed Mater Res B, 2020, 108(7):2765-2775.
[19] [19] YIFEI G, WEI X, LINNAN L, et al. Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution[J]. J Mater Sci, 2010, 46(1): 47-54.
[20] [20] LIU X, XIE Z, ZHANG C, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection[J]. J Mater Sci Mater Med, 2010, 21(2):575-582.
[21] [21] ZHANG X, JIA W, GU Y, et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model[J]. Biomaterials, 2010, 31(22): 5865-5874.
[22] [22] ZHAO D, YU J, HUANG W, et al. Dysprosium lithium borate glass mircrospheres for radiation synovectomy: The in vitro and in vivo performance evaluation[J]. Mater Sci Eng C, 2010, 30(7): 970-974.
[23] [23] ZHANG W, SHEN Y, PAN H, et al. Effects of strontium in modified biomaterials[J]. Acta Biomater, 2011, 7(2): 800-808.
[24] [24] JIA W, LAU G Y, HUANG W, et al. Bioactive glass for large bone repair[J]. Adv Health Mater, 2015, 4(18): 2842-2848.
[25] [25] STONE-WEISS N, PIERCE E M, YOUNGMAN R E, et al. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses[J]. Acta Biomater, 2018,65: 436-449.
[26] [26] GEORGE J L, BROW R K. In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy[J]. J Non-Cryst Solids,2015, 426: 116-124.
[27] [27] WANG Y, YAO A, HUANG W, et al. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion[J]. J Cryst Growth, 2011, 327(1): 245-250.
[28] [28] SONG Y E, AI-HUA Y A O, HUI W, et al. In-situ Transformation of borate glass and its effect on pH value of soaking-liquid[J]. J Inorg Mater, 2015, 30(10): 1069-1074.
[29] [29] YAO A, AI F, LIU X, et al. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature[J]. Mater Res Bull, 2010, 45(1): 25-28.
[30] [30] YAO A H, LI X D, XIONG L, et al. Hollow hydroxyapatite rhBMP-2 in the treatment of bone defects[J]. J Mater Sci Mater Med,2015, 26(1): 1-12. microspheres/chitosan composite as a sustained delivery vehicle for
[31] [31] ZHU K, SUN J, YE S, et al. A novel hollow hydroxyapatite microspheres/chitosan composite drug carrier for controlled release[J]. J Inorg Mater, 2016, 31(4): 434-442.
[32] [32] JIANG F, WANG D P, YE S, et al. Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release[J]. J Mater Sci Mater Med, 2014, 25(2): 391-400.
[33] [33] INJAMURI S, RAHAMAN M N, SHEN Y, et al. Relaxin enhances bone regeneration with BMP-2-loaded hydroxyapatite microspheres[J]. J Biomed Mater Res A, 2020, 108(5): 1231-1242.
[34] [34] XIAO W, FU H, RAHAMAN M N, et al. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration[J]. Acta Biomater, 2013, 9(9): 8374-8383.
[35] [35] WU Z, LIN Z, YAO A, et al. Influence of particle size distribution on the rheological properties and mathematical model fitting of injectable borosilicate bioactive glass bone cement[J]. Ceram Int, 2020, 46(15):24395-24406.
[36] [36] CHANG Yuchen, LIN Ziyang, XIE Xin, et al. An injectable composite bone cement based on mesoporous borosilicate bioactive glass spheres[J]. J Inorg Mater, 2020, 35(12): 1398-1406.
[37] [37] WU Y, YE S, YAO A, et al. Effect of gas-foaming porogen-NaHCO3 and citric acid on the properties of injectable macroporous borate bioactive glass cement[J]. J Inorg Mater, 2017, 32(7): 777-784.
[38] [38] CHANG Y, ZHAO R, WANG H, et al. A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair[J]. J Non-Cryst Solids, 2020, 547: 120291 (1-11).
[39] [39] CUI X, ZHANG Y, WANG H, et al. An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism[J]. J Non-Cryst Solids, 2016, 432: 150-157.
[40] [40] SHEN Y, LIU W, WEN C, et al. Bone regeneration: Importance of local pH—strontium-doped borosilicate scaffold[J]. J Mater Chem,2012, 22(17): 8662-8670.
[41] [41] LIU W, DAN X, LU W W, et al. Spatial distribution of biomaterial microenvironment pH and its modulatory effect on osteoclasts at the early stage of bone defect regeneration[J]. ACS Appl Mater Interfaces,2019, 11(9): 9557-9572.
[42] [42] CUI X, HUANG W, ZHANG Y, et al. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model[J]. Mater Sci Eng C, 2017, 73: 585-595.
[43] [43] ZHANG Y, CUI X, ZHAO S, et al. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model[J]. ACS Appl Mater Interfaces, 2015, 7(4): 2393-2403.
[44] [44] ZHU Y, OUYANG Y, CHANG Y, et al. Evaluation of the proliferation and differentiation behaviors of mesenchymal stem cells with partially converted borate glass containing different amounts of strontium in vitro[J]. Mol Med Rep, 2013, 7(4): 1129-1136.
[45] [45] ZHANG J, GUAN J, ZHANG C, et al. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs[J]. Biomed Mater, 2015, 10(6):1-10.
[46] [46] WEI X, XI T, ZHENG Y, et al. In vitro comparative effect of three novel borate bioglasses on the behaviors of osteoblastic MC3T3-E1 cells[J]. J Mater Sci, 2014, 30(10): 979-983.
[47] [47] RAHAMAN M N, BAL B S, HUANG W. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints[J]. Mater Sci Eng C, 2014, 41: 224-231.
[48] [48] CUI X, HUANG C, ZHANG M, et al. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass[J]. J R Soc Interface, 2017,14(131): 1-13.
[49] [49] JIA W, LAU G Y, HUANG W, et al. Cellular response to 3-D printed bioactive silicate and borosilicate glass scaffolds[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(3): 818-824.
[50] [50] WANG H, ZHAO S, XIAO W, et al. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration[J]. Colloids Surf B Biointerfaces, 2015, 130: 149-156.
[51] [51] XIA L, MA W, ZHOU Y, et al. Stimulatory effects of boron containing bioactive glass on osteogenesis and angiogenesis of polycaprolactone: In Vitro study[J]. Biomed Res Int, 2019, 2019:8961409 (1-12).
[52] [52] DENG Z, LIN B, JIANG Z, et al. Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration[J]. Int J Biol Sci, 2019,15(6): 1113-1124.
[53] [53] WANG H, ZHAO S, CUI X, et al. Evaluation of three-dimensional silver-doped borate bioactive glass scaffolds for bone repair:Biodegradability, biocompatibility, and antibacterial activity[J]. J Mater Res, 2015, 30(18): 2722-2735.
[54] [54] ABULYAZIED D E, ALTURKI A M, YOUNESS R A, et al. Synthesis, structural and biomedical characterization of hydroxyapatite/borosilicate bioactive glass nanocomposites[J]. J Inorg Organomet Polym Mater, 2021, 31(10): 4077-4092.
[55] [55] WANG H, ZHAO S, XIAO W, et al. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 194-203.
[56] [56] GU Y, WANG G, ZHANG X, et al. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair[J]. Mater Sci Eng C Mater Biol Appl, 2014, 36: 294-300.
[57] [57] WANG H, DENG Z, CHEN J, et al. A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo[J]. Int J Biol Sci, 2020, 16(11): 1821-1832.
[58] [58] TANG Y, PANG L, WANG D. Preparation and characterization of borate bioactive glass cross-linked PVA hydrogel[J]. J Non-Cryst Solids, 2017, 476: 25-29.
[59] [59] PANG L, SHEN Y, HU H, et al. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 105:110076.
[60] [60] ABD EL-AZIZ A M, ABD EL-FATTAH A, EL-MAGHRABY A, et al. Viscoelasticity, mechanical properties, and in vitro bioactivity of gelatin/borosilicate bioactive glass nanocomposite hydrogels as potential scaffolds for bone regeneration[J]. Polymers (Basel), 2021,13(12): 1-13.
[61] [61] PANAGOPOULOS G N, MAVROGENIS A F, MAUFFREY C, et al.Intercalary reconstructions after bone tumor resections: A review of treatments[J]. Eur J Orthop Surg Traumatol, 2017, 27(6): 737-746.
[62] [62] CHO H S, PARK Y K, GUPTA S, et al. Augmented reality in bone tumour resection: An experimental study[J]. Bone Joint Res, 2017,6(3): 137-143.
[63] [63] WANG C, GAI S, YANG G, et al. Switchable up-conversion luminescence bioimaging and targeted photothermal ablation in one core-shell-structured nanohybrid by alternating near-infrared light[J]. Dalton Trans, 2019, 48(17): 5817-5830.
[64] [64] WANG H, ZENG X, PANG L, et al. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds[J]. Chem Eng J, 2020,396: 125081.
[65] [65] YAO A, CHEN Q, AI F, et al. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy[J]. J Mater Sci Mater Med, 2011, 22(10): 2239-2247.
[66] [66] JIA W T, ZHANG X, ZHANG C Q, et al. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite[J].Int J Pharm, 2010, 387(1/2): 184-186.
[67] [67] JIA W T, FU Q, HUANG W H, et al. Comparison of borate bioactive glass and calcium sulfate as implants for the local delivery of teicoplanin in the treatment of methicillin-resistant staphylococcus aureus-induced osteomyelitis in a rabbit model[J]. Antimicrob Agents Chemother, 2015, 59(12): 7571-7580.
[68] [68] XIE Z, CUI X, ZHAO C, et al. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model[J]. Antimicrob Agents Chemother, 2013, 57(7): 3293-3298.
[69] [69] DING H, ZHAO C J, CUI X, et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis[J]. PLoS One, 2014, 9(1): e85472.
[70] [70] CUI X, ZHAO C, GU Y, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone[J]. J Mater Sci Mater Med, 2014, 25(3): 733-745.
[71] [71] ZHOU J, WANG H, ZHAO S, et al. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing[J]. Mater Sci Eng C Mater Biol Appl, 2016, 60: 437-445.
[72] [72] ZHAO S, LI L, WANG H, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model[J]. Biomaterials,2015, 53: 379-391.
[73] [73] HU H, TANG Y, PANG L, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro[J]. ACS Appl Mater Interfaces, 2018, 10(27):22939-22950.
[74] [74] TSANG C K, LIU Y, THOMAS J, et al. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance[J]. Nat Commun, 2014, 5: 3446.
[75] [75] PONUGOTI B, XU F, ZHANG C, et al. FOXO1 promotes wound healing through the up-regulation of TGF-beta1 and prevention of oxidative stress[J]. J Cell Biol, 2013, 203(2): 327-343.
[76] [76] MA W, YANG X, MA L, et al. Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing[J]. RSC Adv, 2014, 4(104): 60114-60122.
[77] [77] EL-KADY A M, ALI A A, EL-FIQI A. Controlled delivery of therapeutic ions and antibiotic drug of novel alginate-agarose matrix incorporating selenium-modified borosilicate glass designed for chronic wound healing[J]. J Non-Cryst Solids, 2020, 534: 119889.
[78] [78] PANG L, TIAN P, CUI X, et al. In situ photo-cross-linking hydrogel accelerates diabetic wound healing through restored hypoxia- inducible factor 1-alpha pathway and regulated inflammation[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29363-29379.
Get Citation
Copy Citation Text
DING Jingxin, WANG hui, CUI Xu, PANG Libing, YE Song, YAO Aihua, PAN Haobo, WANG Deping. Recent Development on Borosilicate Bioactive Glass[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1074
Category:
Received: Nov. 16, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Jingxin DING (dingjingxin@tongji.edu.cn)